scholarly journals Modeling the OH-Initiated Oxidation of Mercury in the Global Atmosphere Without Violating Physical Laws

Author(s):  
Theodore Dibble ◽  
Hanna Tetu ◽  
yuge jiao ◽  
Colin Thackray ◽  
Daniel J. Jacob

We present a way for modelers to include the OH + Hg reaction while accounting quantitatively for the dissociation of HOHg•. We use high levels of quantum chemistry to establish the HO-Hg bond energy as 11.0 kcal/mole, and calculate the equilibrium constant for OH + Hg = HOHg•. Using the measured rate constant for association of OH with Hg, we determine the rate constant for HOHg• dissociation. Theory is also used to demonstrate that HOHg• forms stable compounds, HOHgY, with atmospheric radicals (Y = NO2, HOO•, CH3OO•, and BrO). We then present rate constants for use in in modeling OH-initiated oxidation of Hg(0). We use this mechanism to model the global oxidation of Hg(0) in the period 2013-2015 using the GEOS-Chem 3D model of atmospheric chemistry. Because of the rapid dissociation of HOHg•, OH accounts for <1% of the global oxidation of Hg(0) to Hg(II), while Br atoms account for 97%.

2019 ◽  
Author(s):  
Theodore Dibble ◽  
Hanna Tetu ◽  
yuge jiao ◽  
Colin Thackray ◽  
Daniel J. Jacob

We present a way for modelers to include the OH + Hg reaction while accounting quantitatively for the dissociation of HOHg•. We use high levels of quantum chemistry to establish the HO-Hg bond energy as 11.0 kcal/mole, and calculate the equilibrium constant for OH + Hg = HOHg•. Using the measured rate constant for association of OH with Hg, we determine the rate constant for HOHg• dissociation. Theory is also used to demonstrate that HOHg• forms stable compounds, HOHgY, with atmospheric radicals (Y = NO2, HOO•, CH3OO•, and BrO). We then present rate constants for use in in modeling OH-initiated oxidation of Hg(0). We use this mechanism to model the global oxidation of Hg(0) in the period 2013-2015 using the GEOS-Chem 3D model of atmospheric chemistry. Because of the rapid dissociation of HOHg•, OH accounts for <1% of the global oxidation of Hg(0) to Hg(II), while Br atoms account for 97%.


2019 ◽  
Author(s):  
Theodore Dibble ◽  
Hanna Tetu ◽  
yuge jiao ◽  
Colin Thackray ◽  
Daniel J. Jacob

We present a way for modelers to include the OH + Hg reaction while accounting quantitatively for the dissociation of HOHg•. We use high levels of quantum chemistry to establish the HO-Hg bond energy as 11.0 kcal/mole, and calculate the equilibrium constant for OH + Hg = HOHg•. Using the measured rate constant for association of OH with Hg, we determine the rate constant for HOHg• dissociation. Theory is also used to demonstrate that HOHg• forms stable compounds, HOHgY, with atmospheric radicals (Y = NO2, HOO•, CH3OO•, and BrO). We then present rate constants for use in in modeling OH-initiated oxidation of Hg(0). We use this mechanism to model the global oxidation of Hg(0) in the period 2013-2015 using the GEOS-Chem 3D model of atmospheric chemistry. Because of the rapid dissociation of HOHg•, OH accounts for <1% of the global oxidation of Hg(0) to Hg(II), while Br atoms account for 97%.


2017 ◽  
Author(s):  
Ben Newsome ◽  
Mat Evans

Abstract. Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global use these rate constants. Expert panels synthesise laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the JPL and IUPAC evaluations we assess 50 mainly inorganic rate constants and 10 photolysis rates, through simulations where we increase the rate of the reactions to the 1σ upper value recommended by the expert panels. We assess the impact on 4 standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH    M →  HNO3, OH + CH4 → CH3O2 + H2O and O3 + NO → NO2 + O2 are the three largest source of uncertainty in these metrics. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions, gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 11, 12, 17 and 17 % respectively. These are larger than the spread between models in recent model inter-comparisons. Remote regions such as the tropics, poles, and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered when model results disagree with measurement. Calculations for the pre-industrial allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 Wm−2. This uncertainty (15 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model inter-comparison studies where the rate constants used in the models are all identical or very similar. Thus the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.


Rate constants for the recombination of atomic hydrogen with hydrogen molecules, hydrogen atoms, and argon atoms as the third bodies are presented in functional form for the range of temperatures from about 2500 to 7000 °K and are critically compared with the results of other workers. The rate constants are evaluated from detailed analyses of spectrum-line reversal measurements of the fall in temperature accompanying dissociation behind shock waves in gas mixtures containing 20, 40, 50 and 60% of hydrogen in argon. The rate constants for recombination with hydrogen molecules ( k -1 ) and argon atoms ( k -3 ) fit the equations log 10 k -1 = 15.243 - 1.95 x 10 -4 T cm 6 mole -2 s -1 , log 10 k -3 = 15.787 - 2.75 x 10 -4 T cm 6 mole -2 s -1 , with a standard deviation of 0.193 in log 10 k -1 . The rate constant for recombination with hydrogen atoms is about ten times larger than these at 3000 °K and shows a steep inverse dependence on temperature ( ~ T -6 ) above 4000 °K. Below this temperature the power of this dependence decreases rapidly and there is strong evidence that the value of this rate constant has a maximum around 3000 °K. This behaviour is interpreted on the basis of a process of collisional stabilization by atom exchange, requiring an activation energy around 8 kcal mole -1 and taking place under conditions of vibrational adiabaticity. The over-all results indicate that the assumption of equality between the equilibrium constant and the ratio of the rate constants for dissociation and recombination is valid throughout the region of non-equilibrium dissociation and at all temperatures in the shock waves examined.


2019 ◽  
Author(s):  
Khoa T. Lam ◽  
Curtis J. Wilhelmsen ◽  
Theodore Dibble

Models suggest BrHgONO to be the major Hg(II) species formed in the global oxidation of Hg(0), and BrHgONO undergoes rapid photolysis to produce the thermally stable radical BrHgO•. We previously used quantum chemistry to demonstrate that BrHgO• can, like OH radical, readily can abstract hydrogen atoms from sp<sup>3</sup>-hybridized carbon atoms as well as add to NO and NO<sub>2</sub>. In the present work, we reveal that BrHgO• can also add to C<sub>2</sub>H<sub>4</sub> to form BrHgOCH<sub>2</sub>CH<sub>2</sub>•, although this addition appears to proceed with a lower rate constant than the analogous addition of •OH to C<sub>2</sub>H<sub>4</sub>. Additionally, BrHgO• can readily react with HCHO in two different ways: either by addition to the carbon or by abstraction of a hydrogen atom. The minimum energy path for the BrHgO• + HCHO reaction bifurcates, forming two pre-reactive complexes, each of which passes over a separate transition state to form a different product.


2017 ◽  
Vol 17 (23) ◽  
pp. 14333-14352 ◽  
Author(s):  
Ben Newsome ◽  
Mat Evans

Abstract. Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M  HNO3 and O3 + NO  →  NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote regions such as the tropics, poles and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered alongside other processes when model results disagree with measurement. Calculations for the pre-industrial simulation allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 W m−2. This uncertainty (13 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model–model intercomparison studies where the rate constants used in the models are all identical or very similar. Thus, the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well-known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.


1962 ◽  
Vol 40 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
S. J. Price

The pyrolysis of toluene has been studied in a flow system from 913 to 1143 °K. First-order rate constants are independent of the toluene concentration but decrease approximately 9% when the contact time is reduced from 1.0 to 0.41 second. Increasing the contact time from 1.0 second to 2.07 seconds does not affect the rate constant. The overall rate has been resolved into homogeneous and heterogeneous components. It is suggested that the activation energy of the homogeneous process, 85 kcal/mole, may be associated with D(C6H5CH2—H).


2019 ◽  
Author(s):  
Khoa T. Lam ◽  
Curtis J. Wilhelmsen ◽  
Theodore Dibble

Models suggest BrHgONO to be the major Hg(II) species formed in the global oxidation of Hg(0), and BrHgONO undergoes rapid photolysis to produce the thermally stable radical BrHgO•. We previously used quantum chemistry to demonstrate that BrHgO• can, like OH radical, readily can abstract hydrogen atoms from sp<sup>3</sup>-hybridized carbon atoms as well as add to NO and NO<sub>2</sub>. In the present work, we reveal that BrHgO• can also add to C<sub>2</sub>H<sub>4</sub> to form BrHgOCH<sub>2</sub>CH<sub>2</sub>•, although this addition appears to proceed with a lower rate constant than the analogous addition of •OH to C<sub>2</sub>H<sub>4</sub>. Additionally, BrHgO• can readily react with HCHO in two different ways: either by addition to the carbon or by abstraction of a hydrogen atom. The minimum energy path for the BrHgO• + HCHO reaction bifurcates, forming two pre-reactive complexes, each of which passes over a separate transition state to form a different product.


1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.


1999 ◽  
Vol 64 (4) ◽  
pp. 585-594 ◽  
Author(s):  
Barbara Marczewska

The acceleration effect of p-toluidine on the electroreduction of Zn(II) on the mercury electrode surface in binary mixtures water-methanol and water-dimethylformamide is discussed. The obtained apparent and true forward rate constants of Zn(II) reduction indicate that the rate constant of the first electron transfer increases in the presence of p-toluidine. The acceleration effect may probably be accounted for by the concept of the formation on the mercury electrode an activated complex, presumably composed of p-toluidine and solvent molecules.


Sign in / Sign up

Export Citation Format

Share Document