scholarly journals Using Collective Knowledge to Assign Oxidation States

Author(s):  
Kevin Maik Jablonka ◽  
Daniele Ongari ◽  
Seyed Mohamad Moosavi ◽  
Berend Smit

<div><div><div><p>Knowledge of the oxidation state of a metal centre in a material is essential to understand its properties. Chemists have developed several theories to predict the oxidation state on the basis of the chemical formula. These methods are quite successful for simple compounds but often fail to describe the oxidation states of more complex systems, such as metal-organic frameworks. In this work, we present a data-driven approach to automatically assign oxidation states, using a machine learning algorithm trained on the assignments by chemists encoded in the chemical names in the Cambridge Crystallographic Database. Our approach only considers the immediate local chemical environment around a metal centre and, in this way, is robust to most of the experimental uncertainties in these structures (like incorrect protonation or unbound solvents). We find such excellent accuracy (> 98 %) in our predictions that we can use our method to identify a large number of incorrect assignments in the database. The predictions of our model follow chemical intuition, without explicitly having taught the model those heuristics. This work nicely illustrates how powerful the collective knowledge of chemists actually is. Machine learning can harvest this knowledge and convert it into a useful tool for chemists.</p></div></div></div>

2020 ◽  
Author(s):  
Kevin Maik Jablonka ◽  
Daniele Ongari ◽  
Seyed Mohamad Moosavi ◽  
Berend Smit

<div><div><div><p>Knowledge of the oxidation state of a metal centre in a material is essential to understand its properties. Chemists have developed several theories to predict the oxidation state on the basis of the chemical formula. These methods are quite successful for simple compounds but often fail to describe the oxidation states of more complex systems, such as metal-organic frameworks. In this work, we present a data-driven approach to automatically assign oxidation states, using a machine learning algorithm trained on the assignments by chemists encoded in the chemical names in the Cambridge Crystallographic Database. Our approach only considers the immediate local chemical environment around a metal centre and, in this way, is robust to most of the experimental uncertainties in these structures (like incorrect protonation or unbound solvents). We find such excellent accuracy (> 98 %) in our predictions that we can use our method to identify a large number of incorrect assignments in the database. The predictions of our model follow chemical intuition, without explicitly having taught the model those heuristics. This work nicely illustrates how powerful the collective knowledge of chemists actually is. Machine learning can harvest this knowledge and convert it into a useful tool for chemists.</p></div></div></div>


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3658
Author(s):  
Shehzar Shahzad Sheikh ◽  
Mahnoor Anjum ◽  
Muhammad Abdullah Khan ◽  
Syed Ali Hassan ◽  
Hassan Abdullah Khalid ◽  
...  

Batteries are combinations of electrochemical cells that generate electricity to power electrical devices. Batteries are continuously converting chemical energy to electrical energy, and require appropriate maintenance to provide maximum efficiency. Management systems having specialized monitoring features; such as charge controlling mechanisms and temperature regulation are used to prevent health, safety, and property hazards that complement the use of batteries. These systems utilize measures of merit to regulate battery performances. Figures such as the state-of-health (SOH) and state-of-charge (SOC) are used to estimate the performance and state of the battery. In this paper, we propose an intelligent method to investigate the aforementioned parameters using a data-driven approach. We use a machine learning algorithm that extracts significant features from the discharge curves to estimate these parameters. Extensive simulations have been carried out to evaluate the performance of the proposed method under different currents and temperatures.


Author(s):  
Lidong Wu

The No-Free-Lunch theorem is an interesting and important theoretical result in machine learning. Based on philosophy of No-Free-Lunch theorem, we discuss extensively on the limitation of a data-driven approach in solving NP-hard problems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Trevor David Rhone ◽  
Wei Chen ◽  
Shaan Desai ◽  
Steven B. Torrisi ◽  
Daniel T. Larson ◽  
...  

Abstract We use a data-driven approach to study the magnetic and thermodynamic properties of van der Waals (vdW) layered materials. We investigate monolayers of the form $$\hbox {A}_2\hbox {B}_2\hbox {X}_6$$ A 2 B 2 X 6 , based on the known material $$\hbox {Cr}_2\hbox {Ge}_2\hbox {Te}_6$$ Cr 2 Ge 2 Te 6 , using density functional theory (DFT) calculations and machine learning methods to determine their magnetic properties, such as magnetic order and magnetic moment. We also examine formation energies and use them as a proxy for chemical stability. We show that machine learning tools, combined with DFT calculations, can provide a computationally efficient means to predict properties of such two-dimensional (2D) magnetic materials. Our data analytics approach provides insights into the microscopic origins of magnetic ordering in these systems. For instance, we find that the X site strongly affects the magnetic coupling between neighboring A sites, which drives the magnetic ordering. Our approach opens new ways for rapid discovery of chemically stable vdW materials that exhibit magnetic behavior.


2020 ◽  
Author(s):  
Jung-Hyun Kim ◽  
Simon I. Briceno ◽  
Cedric Y. Justin ◽  
Dimitri Mavris

2020 ◽  
Author(s):  
Adam Soffer ◽  
Morya Ifrach ◽  
Stefan Ilic ◽  
Ariel Afek ◽  
Dan Vilenchik ◽  
...  

AbstractDNA–protein interactions are essential in all aspects of every living cell. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is challenging but important, since it may contribute to finding the means to regulate metabolic pathways involving DNA–protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA–protein interactions. Effective binding of T7 primase to its specific DNA recognition se-quences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.


2018 ◽  
Author(s):  
Sergei Posysaev ◽  
Olga Miroshnichenko ◽  
Matti Alatalo ◽  
Duy Le ◽  
Talat S. Rahman

<p>A connection between the oxidation state (OS) and Bader charge has been missing so far. To our knowledge, all previous work tried to connect OS with Bader charges only with few compounds. The aim of this work was to find a dependency between OS and Bader charge, using <a>a large number of compounds from an open database</a>. We show that a <a>correlation indeed exists between OSs and Bader charges</a> using the simplest machine learning algorithm, linear regression. The applicability of determining OS by Bader charges in mixed-valence compounds and surfaces is considered.</p>


Author(s):  
Otmar Hilliges

Sensing of user input lies at the core of HCI research. Deciding which input mechanisms to use and how to implement them such that they work in a way that is easy to use, robust to various environmental factors and accurate in reconstruction of the users intent is a tremendously challenging problem. The main difficulties stem from the complex nature of human behavior which is highly non-linear, dynamic and context dependent and can often only be observed partially. Due to these complexities, research has turned its attention to data-driven techniques in order to build sophisticated and robust input recognition mechanisms. In this chapter we discuss the most important aspects that constitute data-driven signal analysis approaches. The aim is to provide the reader with an overall understanding of the process irrespective of the exact choice of sensor or machine learning algorithm.


Sign in / Sign up

Export Citation Format

Share Document