Cobalt/Lewis Acid Catalysis for Hydrocarbofunctionalization of Alkynes via Cooperative C–H Activation

Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.

2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


2021 ◽  
Author(s):  
Jingyao Geng ◽  
Zhang Fang ◽  
Guangliang Tu ◽  
Yingsheng Zhao

Abstract Palladium-catalyzed non-directed C-H functionalization provides an efficient approach for direct functionalization of arenes, but it usually suffers from poor site selectivity, limiting its wide application. Herein, it is reported for the first time that the proton shuttle of 3,5-dimethyladamantane-1-carboxylic acid (1-DMAdCO2H) can affect the site selectivity during the C-H activation step in palladium-catalyzed non-directed C-H functionalization, leading to highly para-selective C-H olefination of TIPS-protected phenols. This transformation displayed good generality in realizing various other para-selective C-H functionalization reactions such as hydroxylation, halogenation, and allylation reactions. A wide variety of phenol derivatives including bioactive molecules of triclosan, thymol, and propofol, were compatible substrates, leading to the corresponding para-selective products in moderate to good yields. A preliminary mechanism study revealed that the spatial repulsion factor between proton shuttle and bulky protecting group resulted in the selective C-H activation at the less sterically hindered para-position. This new model non-directed para-selective C-H functionalization can provide a straightforward route for remote site-selective C-H activations.


2020 ◽  
Vol 5 (9) ◽  
pp. 1682-1693
Author(s):  
Kin Wai Cheah ◽  
Suzana Yusup ◽  
Martin J. Taylor ◽  
Bing Shen How ◽  
Amin Osatiashtiani ◽  
...  

Application of tetralin as a source of hydrogen for catalytic conversion of oleic acid to diesel-like hydrocarbons using a bimetallic Pd–Cu catalyst.


1988 ◽  
Vol 53 (12) ◽  
pp. 3154-3163 ◽  
Author(s):  
Jiří Klicnar ◽  
Jaromír Mindl ◽  
Ivana Obořilová ◽  
Jaroslav Petříček ◽  
Vojeslav Štěrba

The reaction of 1,2-diaminobenzene with 2,3-butanedione is subject to general acid catalysis in acetate and phosphate buffers (pH 4-7). The rate-limiting step of formation of 2,3-dimethylquinoxaline consists in the protonation of dipolar tetrahedral intermediate. In the case of the reaction of 1,2-diaminobenzene with ethyl 2-oxopropanoate, the dehydration of carbinolamine gradually becomes rate-limiting with increasing pH in acetate buffers, whereas in phosphate buffers a new reaction pathway makes itself felt, viz. the formation of amide catalyzed by the basic buffer component and by hydroxide ion.


2021 ◽  
Author(s):  
Aaron Pan ◽  
Maja Chojnacka ◽  
Robert Crowley ◽  
Lucas Gottemann ◽  
Brandon Haines ◽  
...  

Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel–Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel–Crafts reactivity.


2021 ◽  
Author(s):  
Pedro R. Figueiredo ◽  
Ricardo D. González ◽  
Alexandra T.P. Carvalho

Increased hydrolysis of cocaine to non-toxic compounds is a promising way to prevent cocaine-induced toxicity. However, the short half-life of cocaine in the blood and the rapid conversion in the body to the hydrolysis-resistant metabolite benzoylecgonine, limits the therapeutic potential of serum proteins. Therefore, hydrolysis by tissue-specific hydrolases that do not generate benzoylecgonine deserves further investigation. Here, we report for the first time, the mechanism of cocaine hydrolysis by the human Carboxylesterase 2. We have combined conventional and accelerated Molecular Dynamics, which allowed us to identify the structural motions of the α1 and α10’ helices that act as a putative lid. Quantum Mechanics/Molecular Mechanics calculations on the full cycle showed that the rate-limiting step is the formation of benzoic acid (deacylation step) with an ΔG of 18.3 kcal.mol-1 (a value in close conformity with the experimental value of 19.7 kcal.mol-1).


1986 ◽  
Vol 41 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Cyril Párkányi ◽  
Mohammed A. Al-Salamah

Thermal decomposition of aromatic and heteroaromatic thioureas in boiling chlorobenzene is a first-order reaction. The reaction involves intramolecular hydrogen transfer followed by a cleavage of the C - N bond which is the rate-limiting step. The rate constants of decom position have been determined and correlated with quantum-chemical reactivity indices.


Sign in / Sign up

Export Citation Format

Share Document