scholarly journals Combined Molecular Graph Neural Network and Structural Docking Selects Potent Programmable Cell Death Protein 1/Programmable Death-Ligand 1 (PD-1/PD-L1) Small Molecule Inhibitors

Author(s):  
Prageeth R. Wijewardhane ◽  
Krupal P. Jethava ◽  
Jonathan A Fine ◽  
Gaurav Chopra

The Programmable Cell Death Protein 1/Programmable Death-Ligand 1 (PD-1/PD-L1) interaction is an immune checkpoint utilized by cancer cells to enhance immune suppression. There exists a huge need to develop small molecules drugs that are fast acting, cheap, and readily bioavailable compared to antibodies. Unfortunately, synthesizing and validating large libraries of small-molecule to inhibit PD-1/PD-L1 interaction in a blind manner is a both time-consuming and expensive. To improve this drug discovery pipeline, we have developed a machine learning methodology trained on patent data to identify, synthesize and validate PD-1/PD-L1 small molecule inhibitors. Our model incorporates two features: docking scores to represent the energy of binding (E) as a global feature and sub-graph features through a graph neural network (GNN) to represent local features. This Energy-Graph Neural Network (EGNN) model outperforms traditional machine learning methods as well as a simple GNN with an average F1 score of 0.997 (± 0.004) suggesting that the topology of the small molecule, the structural interaction in the binding pocket, and chemical diversity of the training data are all important considerations for enhancing model performance. A Bootstrapped EGNN model was used to select compounds for synthesis and experimental validation with predicted high and low potency to inhibit PD-1/PD-L1 interaction. The new potent inhibitor, (4-((3-(2,3-dihydrobenzo[<i>b</i>][1,4]dioxin-6-yl)-2-methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two known bioactive scaffolds, and has an IC<sub>50</sub> values of 339.9 nM that is comparatively better than the known bioactive compound. We conclude that our EGNN model can identify active molecules designed by scaffold hopping, a well-known medicinal chemistry technique and will be useful to identify new potent small molecule inhibitors for specific targets.

2020 ◽  
Author(s):  
Prageeth R. Wijewardhane ◽  
Krupal P. Jethava ◽  
Jonathan A Fine ◽  
Gaurav Chopra

The Programmable Cell Death Protein 1/Programmable Death-Ligand 1 (PD-1/PD-L1) interaction is an immune checkpoint utilized by cancer cells to enhance immune suppression. There exists a huge need to develop small molecules drugs that are fast acting, cheap, and readily bioavailable compared to antibodies. Unfortunately, synthesizing and validating large libraries of small-molecule to inhibit PD-1/PD-L1 interaction in a blind manner is a both time-consuming and expensive. To improve this drug discovery pipeline, we have developed a machine learning methodology trained on patent data to identify, synthesize and validate PD-1/PD-L1 small molecule inhibitors. Our model incorporates two features: docking scores to represent the energy of binding (E) as a global feature and sub-graph features through a graph neural network (GNN) to represent local features. This Energy-Graph Neural Network (EGNN) model outperforms traditional machine learning methods as well as a simple GNN with an average F1 score of 0.997 (± 0.004) suggesting that the topology of the small molecule, the structural interaction in the binding pocket, and chemical diversity of the training data are all important considerations for enhancing model performance. A Bootstrapped EGNN model was used to select compounds for synthesis and experimental validation with predicted high and low potency to inhibit PD-1/PD-L1 interaction. The new potent inhibitor, (4-((3-(2,3-dihydrobenzo[<i>b</i>][1,4]dioxin-6-yl)-2-methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two known bioactive scaffolds, and has an IC<sub>50</sub> values of 339.9 nM that is comparatively better than the known bioactive compound. We conclude that our EGNN model can identify active molecules designed by scaffold hopping, a well-known medicinal chemistry technique and will be useful to identify new potent small molecule inhibitors for specific targets.


2021 ◽  
Author(s):  
Prageeth R. Wijewardhane ◽  
Krupal P. Jethava ◽  
Jonathan A Fine ◽  
Gaurav Chopra

The Programmed Cell Death Protein 1/Programmed Death-Ligand 1 (PD-1/PD-L1) interaction is an immune checkpoint utilized by cancer cells to enhance immune suppression. There is a huge need to develop small molecule drugs that are fast acting, cost effective, and readily bioavailable compared to antibodies. Unfortunately, synthesizing and validating large libraries of small- molecules to inhibit PD-1/PD-L1 interaction in a blind manner is both time-consuming and expensive. To improve this drug discovery pipeline, we have developed a machine learning methodology trained on patent data to identify, synthesize, and validate PD-1/PD-L1 small molecule inhibitors. Our model incorporates two features: docking scores to represent the energy of binding (E) as a global feature and sub-graph features through a graph neural network (GNN) of molecular topology to represent local features. This interaction energy-based Graph Neural Network (EGNN) model outperforms traditional machine learning methods and a simple GNN with a F1 score of 0.9524 and Cohen’s kappa score of 0.8861 for the hold out test set, suggesting that the topology of the small molecule, the structural interaction in the binding pocket, and chemical diversity of the training data are all important considerations for enhancing model performance. A Bootstrapped EGNN model was used to select compounds for synthesis and experimental validation with predicted high and low potency to inhibit PD-1/PD-L1 interaction. The potent inhibitor, (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2- methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two known bioactive scaffolds, with an IC50 of 339.9 nM that is comparatively better than the known bioactive compound. We conclude that our bootstrapped EGNN model will be useful to identify target-specific high potency molecules designed by scaffold hopping, a well-known medicinal chemistry technique.


2021 ◽  
Author(s):  
Le-Yi Wang ◽  
Zhe-Min Tan

&lt;p&gt;Tropical cyclone (TC) is among the most destructive weather phenomena on the earth, whose structure and intensity are strongly modulated by TC boundary layer. Mesoscale model used for TC research and prediction must rely on boundary layer parameterization due to low spacial resolution. These boundary layer schemes are mostly developed on field experiments under moderate wind speed. They often underestimate the influence of shear-driven rolls and turbulences. When applied under extreme condition like TC boundary layer, significant bias will be unavoidable. In this study, a novel machine learning model&amp;#8212;one dimensional convolutional neural network (1D-CNN)&amp;#8212;is proposed to tackle the TC boundary layer parameterization dilemma. The 1D-CNN saves about half of the learnable parameters and accomplishes a steady improvement compared to fully-connected neural network. TC large eddy simulation outputs are used as training data of 1D-CNN, which shows strong skewness in calculated turbulent fluxes. The data skewness problem is alleviated in order to reduce 1D-CNN model bias. It is shown in an offline TC boundary layer test that our proposed model, the 1D-CNN, performs significantly better than popular schemes now utilized in TC simulations. Model performance across different scales is essential to final application. It is found that the high resolution data contains the information of low resolution data but not vise versa. The model performance on the extreme data is key to final performance on the whole dataset. Training the model on the highest resolution non-extreme data plus extreme data of different resolutions can secure the robust performance across different scales.&lt;/p&gt;


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1688
Author(s):  
Luqman Ali ◽  
Fady Alnajjar ◽  
Hamad Al Jassmi ◽  
Munkhjargal Gochoo ◽  
Wasif Khan ◽  
...  

This paper proposes a customized convolutional neural network for crack detection in concrete structures. The proposed method is compared to four existing deep learning methods based on training data size, data heterogeneity, network complexity, and the number of epochs. The performance of the proposed convolutional neural network (CNN) model is evaluated and compared to pretrained networks, i.e., the VGG-16, VGG-19, ResNet-50, and Inception V3 models, on eight datasets of different sizes, created from two public datasets. For each model, the evaluation considered computational time, crack localization results, and classification measures, e.g., accuracy, precision, recall, and F1-score. Experimental results demonstrated that training data size and heterogeneity among data samples significantly affect model performance. All models demonstrated promising performance on a limited number of diverse training data; however, increasing the training data size and reducing diversity reduced generalization performance, and led to overfitting. The proposed customized CNN and VGG-16 models outperformed the other methods in terms of classification, localization, and computational time on a small amount of data, and the results indicate that these two models demonstrate superior crack detection and localization for concrete structures.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


Author(s):  
Zhennan Fang ◽  
Huiqiang Wei ◽  
Wenfeng Gou ◽  
Leyuan Chen ◽  
Changfen Bi ◽  
...  

Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3294
Author(s):  
Chentao He ◽  
Jiangfeng Wei ◽  
Yuanyuan Song ◽  
Jing-Jia Luo

The middle and lower reaches of the Yangtze River valley (YRV), which are among the most densely populated regions in China, are subject to frequent flooding. In this study, the predictor importance analysis model was used to sort and select predictors, and five methods (multiple linear regression (MLR), decision tree (DT), random forest (RF), backpropagation neural network (BPNN), and convolutional neural network (CNN)) were used to predict the interannual variation of summer precipitation over the middle and lower reaches of the YRV. Predictions from eight climate models were used for comparison. Of the five tested methods, RF demonstrated the best predictive skill. Starting the RF prediction in December, when its prediction skill was highest, the 70-year correlation coefficient from cross validation of average predictions was 0.473. Using the same five predictors in December 2019, the RF model successfully predicted the YRV wet anomaly in summer 2020, although it had weaker amplitude. It was found that the enhanced warm pool area in the Indian Ocean was the most important causal factor. The BPNN and CNN methods demonstrated the poorest performance. The RF, DT, and climate models all showed higher prediction skills when the predictions start in winter than in early spring, and the RF, DT, and MLR methods all showed better prediction skills than the numerical climate models. Lack of training data was a factor that limited the performance of the machine learning methods. Future studies should use deep learning methods to take full advantage of the potential of ocean, land, sea ice, and other factors for more accurate climate predictions.


Sign in / Sign up

Export Citation Format

Share Document