scholarly journals Stereoselective Synthesis of Allele-Specific BET Inhibitors

Author(s):  
Adam Bond ◽  
Andrea Testa ◽  
Alessio Ciulli

Developing stereoselective synthetic routes that are efficient and cost-effective is important to allow easy access to biologically active molecules. Our previous syntheses of allele-selective bumped inhibitors of the Bromo and Extra-Terminal (BET) bromodomain proteins, Brd2, Brd3, Brd4 and BrdT, required a wasteful, late-stage alkylation step and expensive chiral separation. To circumvent these limitations, we developed a route based on stereocontrolled alkylation of an aspartic acid derivative that was used in a divergent, racemisation-free protocol to yield structurally diverse and enantiopure triazolodiazepines. With this approach, we synthesized bumped thienodiazepine-based BET inhibitor, ET-JQ1-OMe, in five steps and 99% ee without the need for chiral chromatography. Exquisite selectivity of ET-JQ1-OMe for Leu-Ala and Leu-Val mutants over wild-type bromodomain was confirmed by isothermal titration calorimetry and X-ray crystallography. Our new approach provides unambiguous chemical evidence for the absolute stereochemistry of the active, allele-specific BET inhibitor and a viable route that will facilitate wider access to this compound class.

2020 ◽  
Author(s):  
Adam Bond ◽  
Andrea Testa ◽  
Alessio Ciulli

Developing stereoselective synthetic routes that are efficient and cost-effective is important to allow easy access to biologically active molecules. Our previous syntheses of allele-selective bumped inhibitors of the Bromo and Extra-Terminal (BET) bromodomain proteins, Brd2, Brd3, Brd4 and BrdT, required a wasteful, late-stage alkylation step and expensive chiral separation. To circumvent these limitations, we developed a route based on stereocontrolled alkylation of an aspartic acid derivative that was used in a divergent, racemisation-free protocol to yield structurally diverse and enantiopure triazolodiazepines. With this approach, we synthesized bumped thienodiazepine-based BET inhibitor, ET-JQ1-OMe, in five steps and 99% ee without the need for chiral chromatography. Exquisite selectivity of ET-JQ1-OMe for Leu-Ala and Leu-Val mutants over wild-type bromodomain was confirmed by isothermal titration calorimetry and X-ray crystallography. Our new approach provides unambiguous chemical evidence for the absolute stereochemistry of the active, allele-specific BET inhibitor and a viable route that will facilitate wider access to this compound class.


2020 ◽  
Vol 18 (38) ◽  
pp. 7533-7539
Author(s):  
Adam G. Bond ◽  
Andrea Testa ◽  
Alessio Ciulli

Developing stereoselective synthetic routes that are efficient and cost-effective allows easy access to allele-selective bumped BET inhibitors.


2021 ◽  
Author(s):  
Wei-Yu Shi ◽  
Ya-Nan Ding ◽  
Nian Zheng ◽  
Xue-Ya Gou ◽  
Zhe Zhang ◽  
...  

C-Aryl glycosides are of high value as drug candidates. Here a novel and cost-effective nickel catalyzed ortho-CAr-H glycosylation reaction with high regioselectivity and excellent α-selectivity is described. This method shows...


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3470
Author(s):  
Aubrey L. Miller ◽  
Patrick L. Garcia ◽  
Samuel C. Fehling ◽  
Tracy L. Gamblin ◽  
Rebecca B. Vance ◽  
...  

Gemcitabine is used to treat pancreatic cancer (PC), but is not curative. We sought to determine whether gemcitabine + a BET bromodomain inhibitor was superior to gemcitabine, and identify proteins that may contribute to the efficacy of this combination. This study was based on observations that cell cycle dysregulation and DNA damage augment the efficacy of gemcitabine. BET inhibitors arrest cells in G1 and allow increases in DNA damage, likely due to inhibition of expression of DNA repair proteins Ku80 and RAD51. BET inhibitors (JQ1 or I-BET762) + gemcitabine were synergistic in vitro, in Panc1, MiaPaCa2 and Su86 PC cell lines. JQ1 + gemcitabine was more effective in vivo than either drug alone in patient-derived xenograft models (P < 0.01). Increases in the apoptosis marker cleaved caspase 3 and DNA damage marker γH2AX paralleled antitumor efficacy. Notably, RNA-seq data showed that JQ1 + gemcitabine selectively inhibited HMGCS2 and APOC1 ~6-fold, compared to controls. These proteins contribute to cholesterol biosynthesis and lipid metabolism, and their overexpression supports tumor cell proliferation. IPA data indicated that JQ1 + gemcitabine selectively inhibited the LXR/RXR activation pathway, suggesting the hypothesis that this inhibition may contribute to the observed in vivo efficacy of JQ1 + gemcitabine.


Author(s):  
Harish C. Upadhyay

: No doubt antibiotics have saved billions of lives, but lack of novel antibiotics, development of resistance mechanisms in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria hamper the successful treatment of infections. Due to widespread emergence of resistance, even the new families of antimicrobial agents have a short life expectancy. Drugs acting on single target often lead to drug resistance and are associated with various side effects. To overcome this problem either multidrug therapy or single drug acting on multiple targets may be used. The later are called ‘hybrid molecules’ which are formed by clubbing two biologically active pharmacophores together with or without an appropriate linker. In this rapidly evolving era, the development of natural product-based hybrid molecules may be a super-alternative to multidrug therapy to combat drug resistance caused by various bacterial and fungal strains. Coumarins (benzopyran-2-one) are one of the earliest reported plant secondary metabolites having clinically proven diverse range of pharmacological properties. On the other hand, 1,2,3-triazole is a common pharmacophore in many drugs responsible for polar interactions improving the solubility and binding affinity to biomolecular targets. In this review we discuss recent advances in Coumarin-1,2,3-triazole hybrids as potential antibacterial agents aiming to provide a useful platform for the exploration of new leads with broader spectrum, more effectiveness, less toxicity with multiple modes of action for the development of cost-effective and safer drugs in the future.


2021 ◽  
pp. 22-35
Author(s):  
Stanislav V. Pechinskii ◽  
Eduard T. Oganesyan ◽  
Anna G. Kuregyan

Molecular docking is a convenient and cost-effective tool for targeted screening of biologically active structures. This method makes it possible to reveal the relationship between structure and activity, as well as to search for new active compounds. Due to the fact that the antiviral activity of flavonoids and their derivatives has been shown experimentally and clinically, the study of their antiviral activity against SARS-CoV-2 is a promising study. In an in silico experiment, the possibility of binding 20 flavonoid ligands and the main protease SARS-CoV-2 was studied. The structural features of flavone and flavanone derivatives have been determined, which determine their ability to block the main protease of the SARS-CoV-2 virus. Structures of eight new candidates that bind the main protease SARS-CoV-2, which have the prospect of synthesis and further pharmacological research, have been proposed.


ChemInform ◽  
2014 ◽  
Vol 45 (9) ◽  
pp. no-no
Author(s):  
Soumen Biswas ◽  
Pradeep Kumar Jaiswal ◽  
Shivendra Singh ◽  
Shaikh M. Mobin ◽  
Sampak Samanta

Sign in / Sign up

Export Citation Format

Share Document