scholarly journals Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals

Author(s):  
Aniket S. Mule ◽  
Sergio Mazzotti ◽  
Aurelio A. Rossinelli ◽  
Marianne Aellen ◽  
P. Tim Prins ◽  
...  

Magic-sized clusters (MSCs) of semiconductor are typically defined as specific molecular-scale arrangements of atoms that exhibit enhanced stability. They often grow in discrete jumps, creating a series of crystallites, without the appearance of intermediate sizes. However, despite their long history, the mechanism behind their special stability and growth remains poorly understood. This is particularly true considering experiments that have shown discrete evolution of MSCs to sizes well beyond the “cluster” regime and into the size range of colloidal quantum dots. Here, we study the growth of these larger magic-sized CdSe nanocrystals to unravel the underlying growth mechanism. We first introduce a synthetic protocol that yields a series of nine magic-sized nanocrystals of increasing size. By investigating these crystallites, we obtain important clues about the mechanism. We then develop a microscopic model that uses classical nucleation theory to determine kinetic barriers and simulate the growth. We show that magic-sized nanocrystals are consistent with a series of zinc-blende crystallites that grow layer by layer under surface-reaction-limited conditions. They have a tetrahedral shape, which is preserved when a monolayer is added to any of its four identical facets, leading to a series of discrete nanocrystals with special stability. Our analysis also identifies strong similarities with the growth of semiconductor nanoplatelets, which we then exploit to increase further the size range of our magic-sized nanocrystals. Although we focus here on CdSe, these results reveal a fundamental growth mechanism that can provide a different approach to nearly monodisperse nanocrystals.

2020 ◽  
Author(s):  
Aniket S. Mule ◽  
Sergio Mazzotti ◽  
Aurelio A. Rossinelli ◽  
Marianne Aellen ◽  
P. Tim Prins ◽  
...  

Magic-sized clusters (MSCs) of semiconductor are typically defined as specific molecular-scale arrangements of atoms that exhibit enhanced stability. They often grow in discrete jumps, creating a series of crystallites, without the appearance of intermediate sizes. However, despite their long history, the mechanism behind their special stability and growth remains poorly understood. This is particularly true considering experiments that have shown discrete evolution of MSCs to sizes well beyond the “cluster” regime and into the size range of colloidal quantum dots. Here, we study the growth of these larger magic-sized CdSe nanocrystals to unravel the underlying growth mechanism. We first introduce a synthetic protocol that yields a series of nine magic-sized nanocrystals of increasing size. By investigating these crystallites, we obtain important clues about the mechanism. We then develop a microscopic model that uses classical nucleation theory to determine kinetic barriers and simulate the growth. We show that magic-sized nanocrystals are consistent with a series of zinc-blende crystallites that grow layer by layer under surface-reaction-limited conditions. They have a tetrahedral shape, which is preserved when a monolayer is added to any of its four identical facets, leading to a series of discrete nanocrystals with special stability. Our analysis also identifies strong similarities with the growth of semiconductor nanoplatelets, which we then exploit to increase further the size range of our magic-sized nanocrystals. Although we focus here on CdSe, these results reveal a fundamental growth mechanism that can provide a different approach to nearly monodisperse nanocrystals.


2022 ◽  
Vol 3 ◽  
Author(s):  
Vitalii Starchenko

A fundamental understanding of mineral precipitation kinetics relies largely on microscopic observations of the dynamics of mineral surfaces exposed to supersaturated solutions. Deconvolution of tightly bound transport, surface reaction, and crystal nucleation phenomena still remains one of the main challenges. Particularly, the influence of these processes on texture and morphology of mineral precipitate remains unclear. This study presents a coupling of pore-scale reactive transport modeling with the Arbitrary Lagrangian-Eulerian approach for tracking evolution of explicit solid interface during mineral precipitation. It incorporates a heterogeneous nucleation mechanism according to Classical Nucleation Theory which can be turned “on” or “off.” This approach allows us to demonstrate the role of nucleation on precipitate texture with a focus at micrometer scale. In this work precipitate formation is modeled on a 10 micrometer radius particle in reactive flow. The evolution of explicit interface accounts for the surface curvature which is crucial at this scale in the regime of emerging instabilities. The results illustrate how the surface reaction and reactive fluid flow affect the shape of precipitate on a solid particle. It is shown that nucleation promotes the formation of irregularly shaped precipitate and diminishes the effect of the flow on the asymmetry of precipitation around the particle. The observed differences in precipitate structure are expected to be an important benchmark for reaction-driven precipitation in natural environments.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1109
Author(s):  
Young Park ◽  
Seung Park ◽  
Kang-Won Jung ◽  
Yunju Hwang ◽  
Saurav Sorcar ◽  
...  

In the current work, stable prenucleated PbS quantum dots (QDs) with a sub-nanometer (0.8 nm) size have been successfully synthesized via a systematically designed experiment. A detailed analysis of critical nucleation, growth, and stability for such ultrasmall prenucleated clusters is done. The experimental strategy is based on controlled concentration, temperature and injection of respective precursors, thus enabling us to control nucleation rate and separation of stable sub-nanometer PbS QDs with size 0.8 nm. Significantly, by providing additional thermal energy to sub-nanometer PbS QDs, we achieved the fully nucleated cubic crystalline structure of PbS with size of around 1.5 nm. The size and composition of the prenucleated QDs are investigated by sophisticated tools like X-ray photoelectron spectroscopy (XPS) and medium energy ion scattering (MEIS) spectroscopy which confirms the synthesis of PbS with Pb2+ rich surface while the UV-Vis spectroscopy and X-ray diffraction (XRD) data suggests an alternative crystallization path. Non-classical nucleation theory is employed to substantiate the growth mechanism of prenucleated PbS QDs.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 478
Author(s):  
Zhongyun Fan ◽  
Hua Men ◽  
Yun Wang ◽  
Zhongping Que

Heterogeneous nucleation is a widespread phenomenon in both nature and technology. However, our current understanding is largely confined to the classical nucleation theory (CNT) postulated over a century ago, in which heterogeneous nucleation occurs stochastically to form a spherical cap facilitated by a substrate. In this paper, we show that heterogeneous nucleation in systems with negative lattice misfit completes deterministically within three atomic layers by structural templating to form a two-dimentional template from which the new phase can grow. Using molecular dynamics (MD) simulations of a generic system containing metallic liquid (Al) and a substrate of variable lattice misfit (fcc lattice with fixed Al atoms), we found that heterogeneous nucleation proceeds layer-by-layer: the first layer accommodates misfit through a partial edge dislocation network; the second layer twists an angle through a partial screw dislocation network to reduce lattice distortion; and the third layer creates a crystal plane of the solid (the 2D nucleus) that templates further growth. The twist angle of the solid relative to the substrate as a signature of heterogeneous nucleation in the systems with negative lattice misfit has been validated by high resolution transmission electron microscopic (HRTEM) examination of TiB2/Al and TiB2/α-Al15(Fe, Mn)3Si2 interfaces in two different Al-alloys.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 715
Author(s):  
Miodrag J. Lukić ◽  
Felix Lücke ◽  
Teodora Ilić ◽  
Katharina Petrović ◽  
Denis Gebauer

Nucleation of minerals in the presence of additives is critical for achieving control over the formation of solids in biomineralization processes or during syntheses of advanced hybrid materials. Herein, we investigated the early stages of Fe(III) (oxy)(hydr)oxide formation with/without polyglutamic acid (pGlu) at low driving force for phase separation (pH 2.0 to 3.0). We employed an advanced pH-constant titration assay, X-ray diffraction, thermal analysis with mass spectrometry, Fourier Transform infrared spectroscopy, and scanning electron microscopy. Three stages were observed: initial binding, stabilization of Fe(III) pre-nucleation clusters (PNCs), and phase separation, yielding Fe(III) (oxy)(hydr)oxide. The data suggest that organic–inorganic interactions occurred via binding of olation Fe(III) PNC species. Fourier Transform Infrared Spectroscopy (FTIR) analyses revealed a plausible interaction motif and a conformational adaptation of the polypeptide. The stabilization of the aqueous Fe(III) system against nucleation by pGlu contrasts with the previously reported influence of poly-aspartic acid (pAsp). While this is difficult to explain based on classical nucleation theory, alternative notions such as the so-called PNC pathway provide a possible rationale. Developing a nucleation theory that successfully explains and predicts distinct influences for chemically similar additives like pAsp and pGlu is the Holy Grail toward advancing the knowledge of nucleation, early growth, and structure formation.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 134
Author(s):  
Ivan Smirnov ◽  
Natalia Mikhailova

Researchers are still working on the development of models that facilitate the accurate estimation of acoustic cavitation threshold. In this paper, we have analyzed the possibility of using the incubation time criterion to calculate the threshold of the onset of acoustic cavitation depending on the ultrasound frequency, hydrostatic pressure, and temperature of a liquid. This criterion has been successfully used by earlier studies to calculate the dynamic strength of solids and has recently been proposed in an adapted version for calculating the cavitation threshold. The analysis is carried out for various experimental data for water presented in the literature. Although the criterion assumes the use of macroparameters of a liquid, we also considered the possibility of taking into account the size of cavitation nuclei and its influence on the calculation result. We compared the results of cavitation threshold calculations done using the incubation time criterion of cavitation and the classical nucleation theory. Our results showed that the incubation time criterion more qualitatively models the results of experiments using only three parameters of the liquid. We then discussed a possible relationship between the parameters of the two approaches. The results of our study showed that the criterion under consideration has a good potential and can be conveniently used for applications where there are special requirements for ultrasound parameters, maximum negative pressure, and liquid temperature.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
Mark D. Tarn ◽  
Sebastien N. F. Sikora ◽  
Grace C. E. Porter ◽  
Jung-uk Shim ◽  
Benjamin J. Murray

The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of −35.1 to −36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice–supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m−2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.


Sign in / Sign up

Export Citation Format

Share Document