Unzipping Natural Products: Improved Natural Product Structure Predictions by Ensemble Modeling and Fingerprint Matching

2018 ◽  
Author(s):  
William A. Shirley ◽  
Brian P. Kelley ◽  
Yohann Potier ◽  
John H. Koschwanez ◽  
Robert Bruccoleri ◽  
...  

This pre-print explores ensemble modeling of natural product targets to match chemical structures to precursors found in large open-source gene cluster repository antiSMASH. Commentary on method, effectiveness, and limitations are enclosed. All structures are public domain molecules and have been reviewed for release.

2018 ◽  
Author(s):  
William A. Shirley ◽  
Brian P. Kelley ◽  
Yohann Potier ◽  
John H. Koschwanez ◽  
Robert Bruccoleri ◽  
...  

This pre-print explores ensemble modeling of natural product targets to match chemical structures to precursors found in large open-source gene cluster repository antiSMASH. Commentary on method, effectiveness, and limitations are enclosed. All structures are public domain molecules and have been reviewed for release.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Grigalunas ◽  
Annina Burhop ◽  
Sarah Zinken ◽  
Axel Pahl ◽  
José-Manuel Gally ◽  
...  

AbstractNatural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Marc Feuermann ◽  
Emmanuel Boutet ◽  
Anne Morgat ◽  
Kristian Axelsen ◽  
Parit Bansal ◽  
...  

The UniProt Knowledgebase UniProtKB is a comprehensive, high-quality, and freely accessible resource of protein sequences and functional annotation that covers genomes and proteomes from tens of thousands of taxa, including a broad range of plants and microorganisms producing natural products of medical, nutritional, and agronomical interest. Here we describe work that enhances the utility of UniProtKB as a support for both the study of natural products and for their discovery. The foundation of this work is an improved representation of natural product metabolism in UniProtKB using Rhea, an expert-curated knowledgebase of biochemical reactions, that is built on the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Knowledge of natural products and precursors is captured in ChEBI, enzyme-catalyzed reactions in Rhea, and enzymes in UniProtKB/Swiss-Prot, thereby linking chemical structure data directly to protein knowledge. We provide a practical demonstration of how users can search UniProtKB for protein knowledge relevant to natural products through interactive or programmatic queries using metabolite names and synonyms, chemical identifiers, chemical classes, and chemical structures and show how to federate UniProtKB with other data and knowledge resources and tools using semantic web technologies such as RDF and SPARQL. All UniProtKB data are freely available for download in a broad range of formats for users to further mine or exploit as an annotation source, to enrich other natural product datasets and databases.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Mark C. Walker

ABSTRACT Mark Walker studies the biosynthesis and engineering of bacterial natural products with the long-term goal of identifying new antibiotic compounds. In this mSphere of Influence, he reflects on how “Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A” by K. Yamanaka, K. A. Reynolds, R. D. Kersten, K. S. Ryan, et al. (Proc Natl Acad Sci USA 111:1957–1962, 2014, https://doi.org/10.1073/pnas.1319584111) impacted his thinking on using synthetic biology approaches to study natural product biosynthesis.


2020 ◽  
Vol 16 ◽  
pp. 3015-3031
Author(s):  
Zhuo Wang ◽  
Junyang Liu

Many natural products possess interesting medicinal properties that arise from their intriguing chemical structures. The highly-substituted carbocycle is one of the most common structural features in many structurally complicated natural products. However, the construction of highly-substituted, stereo-congested, five-membered carbocycles containing all-carbon quaternary center(s) is, at present, a distinct challenge in modern synthetic chemistry, which can be accessed through the all-carbon [3 + 2] cycloaddition. More importantly, the all-carbon [3 + 2] cycloaddition can forge vicinal all-carbon quaternary centers in a single step and has been demonstrated in the synthesis of complex natural products. In this review, we present the development of all-carbon [3 + 2] cycloadditions and illustrate their application in natural product synthesis reported in the last decade covering 2011–2020 (inclusive).


2020 ◽  
Vol 23 (9) ◽  
pp. 862-876
Author(s):  
Hayrettin O. Gulcan ◽  
Ilkay E. Orhan

With respect to the unknowns of pathophysiology of Alzheimer’s Disease (AD)-, and Parkinson’s Disease (PD)-like neurodegenerative disorders, natural product research is still one of the valid tools in order to provide alternative and/or better treatment options. At one hand, various extracts of herbals provide a combination of actions targeting multiple receptors, on the other hand, the discovery of active natural products (i.e., secondary metabolites) generally offers alternative chemical structures either ready to be employed in clinical studies or available to be utilized as important scaffolds for the design of novel agents. Regarding the importance of certain enzymes (e.g. cholinesterase and monoamine oxidase B), for the treatment of AD and PD, we have surveyed the natural product research within this area in the last decade. Particularly novel natural agents discovered within this period, concomitant to novel biological activities displayed for known natural products, are harmonized within the present study.


2015 ◽  
Vol 81 (13) ◽  
pp. 4339-4350 ◽  
Author(s):  
Qi Zhang ◽  
James R. Doroghazi ◽  
Xiling Zhao ◽  
Mark C. Walker ◽  
Wilfred A. van der Donk

ABSTRACTLanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters fromActinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.


2022 ◽  
Author(s):  
Garima Singh ◽  
Anjuli Calchera ◽  
Dominik Merges ◽  
Henrique Valim ◽  
Juergen Otte ◽  
...  

Natural products of lichen-forming fungi are structurally diverse and have a variety of medicinal properties. Yet they a have limited implementation in industry as for most of the natural products, the corresponding genes remain unknown. Here we implement a long-read sequencing and bioinformatic approach to identify the biosynthetic gene cluster of the bioactive natural product gyrophoric acid (GA). Using 15 high-quality genomes representing nine GA-producing species of the lichen-forming fungal genus Umbilicaria, we identify the most likely GA cluster and investigate cluster gene organization and composition across the nine species. Our results show that GA clusters are promiscuous within Umbilicaria with only three genes that are conserved across species, including the PKS gene. In addition, our results suggest that the same cluster codes for different but structurally similar NPs, i.e., GA, umbilicaric acid and hiascic acid, bringing new evidence that lichen metabolite diversity is also generated through regulatory mechanisms at the molecular level. Ours is the first study to identify the most likely GA cluster. This information is essential for opening up avenues for biotechnological approaches to producing and modifying GA, and possibly other lichen compounds. We show that bioinformatics approaches are useful in linking genes and potentially associated natural products. Genome analyses help unlocking the pharmaceutical potential of organisms such as lichens, which are biosynthetically diverse, but slow growing, and usually uncultivable due to their symbiotic nature.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1566 ◽  
Author(s):  
José L. Medina-Franco ◽  
Fernanda I. Saldívar-González

Natural products have a significant role in drug discovery. Natural products have distinctive chemical structures that have contributed to identifying and developing drugs for different therapeutic areas. Moreover, natural products are significant sources of inspiration or starting points to develop new therapeutic agents. Natural products such as peptides and macrocycles, and other compounds with unique features represent attractive sources to address complex diseases. Computational approaches that use chemoinformatics and molecular modeling methods contribute to speed up natural product-based drug discovery. Several research groups have recently used computational methodologies to organize data, interpret results, generate and test hypotheses, filter large chemical databases before the experimental screening, and design experiments. This review discusses a broad range of chemoinformatics applications to support natural product-based drug discovery. We emphasize profiling natural product data sets in terms of diversity; complexity; acid/base; absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties; and fragment analysis. Novel techniques for the visual representation of the chemical space are also discussed.


Author(s):  
Herbert Waldmann ◽  
George Karageorgis ◽  
Daniel J. Foley ◽  
Luca Laraia ◽  
Susanne Brakmann

Sign in / Sign up

Export Citation Format

Share Document