scholarly journals Two-dimensional Kagome Lattices Made of Hetero Triangulenes are Dirac Semimetals or Single-Band Semiconductors

2018 ◽  
Author(s):  
Yu Jing ◽  
Thomas Heine

In two dimensions, 11 lattice types are mathematically possible, the Kepler nets, but nature offers only few of them in dense crystals. Two-dimensional covalent organic frameworks (2D COFs) offer to overcome this limitation and to provide nets that are to date only possible as photonic lattices or atom-by-atom engineered surface structures. Here we discuss, based on first-principles calculations, 2D kagome lattices composed of polymerized hetero-triangulene units, planar molecules with D3h point group containing a B, C or N center atom and CH<sub>2</sub>, O or CO bridges. We explore the design principles for a functional lattice made of COFs, which involves control of π-conjugation and electronic structure of the knots. The former is achieved by the chemical potential of the bridge groups, while the latter is controlled by the heteroatom. The resulting 2D kagome COFs have a characteristic electronic structure with a Dirac band sandwiched by two flat bands and are either Dirac semimetals (C center), or single-band semiconductors - materials with either exclusively electrons (B center) or holes (N center) as charge carriers of very high mobility, reaching values of up to ~8×10<sup>3</sup> cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>, which is comparable to crystalline silicon. The flat bands show a delocalized electronic structure with no contribution from the center atoms, and their curvature is modulated by the bridge atoms. This suggests that the flat bands are inherent features of the kagome lattice.

2018 ◽  
Author(s):  
Yu Jing ◽  
Thomas Heine

In two dimensions, 11 lattice types are mathematically possible, the Kepler nets, but nature offers only few of them in dense crystals. Two-dimensional covalent organic frameworks (2D COFs) offer to overcome this limitation and to provide nets that are to date only possible as photonic lattices or atom-by-atom engineered surface structures. Here we discuss, based on first-principles calculations, 2D kagome lattices composed of polymerized hetero-triangulene units, planar molecules with D3h point group containing a B, C or N center atom and CH<sub>2</sub>, O or CO bridges. We explore the design principles for a functional lattice made of COFs, which involves control of π-conjugation and electronic structure of the knots. The former is achieved by the chemical potential of the bridge groups, while the latter is controlled by the heteroatom. The resulting 2D kagome COFs have a characteristic electronic structure with a Dirac band sandwiched by two flat bands and are either Dirac semimetals (C center), or single-band semiconductors - materials with either exclusively electrons (B center) or holes (N center) as charge carriers of very high mobility, reaching values of up to ~8×10<sup>3</sup> cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>, which is comparable to crystalline silicon. The flat bands show a delocalized electronic structure with no contribution from the center atoms, and their curvature is modulated by the bridge atoms. This suggests that the flat bands are inherent features of the kagome lattice.


2022 ◽  
Author(s):  
Xiaojuan Ni ◽  
Hong Li ◽  
Feng Liu ◽  
Jean-Luc Bredas

Two-dimensional covalent organic frameworks (2D-COFs), also referred to as 2D polymer networks, display unusual electronic-structure characteristics, which can significantly enrich and broaden the fields of electronics and spintronics. In this...


2022 ◽  
Author(s):  
Xiangyang Wei ◽  
Obed Alves Santos ◽  
Cristhian Humberto Sumba Lusero ◽  
Gerrit Bauer ◽  
Jamal Ben Youssef ◽  
...  

Abstract Conductivities are key material parameters that govern various types of transport (electronic charge, spin, heat etc.) driven by thermodynamic forces. Magnons, the elementary excitations of the magnetic order, flow under the gradient of a magnon chemical potential in proportion to a magnon (spin) conductivity σm. The magnetic insulator yttrium iron garnet (YIG) is the material of choice for efficient magnon spin transport. Here we report an unexpected giant σm in record-thin YIG films with thicknesses down to 3.7 nm when the number of occupied two-dimensional (2D) subbands is reduced from a large number to a few, which corresponds to a transition from 3D to 2D magnon transport. We extract a 2D spin conductivity (≈1 S) at room temperature, comparable to the (electronic) spin conductivity of the high-mobility two-dimensional electron gas in GaAs quantum wells at millikelvin temperatures. Such high conductivities offer unique opportunities to develop low-dissipation magnon-based spintronic devices.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
J. S. Liu ◽  
S. C. Huan ◽  
Z. H. Liu ◽  
W. L. Liu ◽  
Z. T. Liu ◽  
...  

1998 ◽  
Vol 12 (21) ◽  
pp. 2129-2138 ◽  
Author(s):  
Augusto Gonzalez ◽  
Aurora Perez

We study trapped systems of bosons at zero temperature in three and two dimensions. Conditions are fulfilled for the application of Gross–Pitaevskii theory with a positive scattering length. Series expansions for ground-state properties are obtained in both the noninteracting and the strong-coupling (Thomas–Fermi) limits. From these expansions, analytic estimates are presented in the form of two-point Padé approximants. We explicitly show the approximants for the total energy per particle and the chemical potential.


Author(s):  
Thomas K. Ogorzalek

This theoretical chapter develops the argument that the conditions of cities—large, densely populated, heterogeneous communities—generate distinctive governance demands supporting (1) market interventions and (2) group pluralism. Together, these positions constitute the two dimensions of progressive liberalism. Because of the nature of federalism, such policies are often best pursued at higher levels of government, which means that cities must present a united front in support of city-friendly politics. Such unity is far from assured on the national level, however, because of deep divisions between and within cities that undermine cohesive representation. Strategies for success are enhanced by local institutions of horizontal integration developed to address the governance demands of urbanicity, the effects of which are felt both locally and nationally in the development of cohesive city delegations and a unified urban political order capable of contending with other interests and geographical constituencies in national politics.


2021 ◽  
Vol 555 ◽  
pp. 149516
Author(s):  
Jacek J. Kolodziej ◽  
Dawid Wutke ◽  
Jakub Lis ◽  
Natalia Olszowska

Author(s):  
Xiaoqiu Guo ◽  
Ruixin Yu ◽  
Jingwen Jiang ◽  
Zhuang Ma ◽  
Xiuwen Zhang

Topological insulation is widely predicted in two-dimensional (2D) materials realized by epitaxial growth or van der Waals (vdW) exfoliation. Such 2D topological insulators (TI’s) host many interesting physical properties such...


Sign in / Sign up

Export Citation Format

Share Document