scholarly journals Syntheses and identification of cefotaxime-non-transition metal complexes

2021 ◽  
Vol 12 (2) ◽  
pp. 1213-1222
Author(s):  
Mohamed S. Teleb ◽  
Soha F. Mohammed ◽  
Akmal S. Gaballa

The coordination chemistry of the biologically active cefotaxime sodium and, in particular, the mode of its interaction with some metal ions of electronic configuration d0 (alkaline earth) and others, Zn(II), Pb(II), and Ce ions with the electronic configuration d10  has been investigated. Seven complexes were synthesized, isolated in the solid-state, and characterized by elemental analyses, conductivity measurements, IR and UV/VIS spectra, as well as thermal analyses. Based on the obtained experimental data and literature, the structural formulae to these complexes were suggested and formulated as [Mg(cef)2].2H2O (1), [Ca(cef)2].2H2O (2) [Sr(cef)2].2H2O (3), [Ba(cef)2].2H2O (4), [Zn(cef)2(H2O)2] (5), [Pb(cef)2(H2O)2].4H2O (6) and [Ce(cef)2(H2O)2].3H2O (7). The data obtained show that cefotaxime interacted with metal in a molar ratio of 2:1, respectively. Cefotaxime bonded to metal ions in the anionic form as a bidentate ligand through the lactam carbonyl (C=O) and the carboxylate group (COO-). Tetrahedral and octahedral shapes were proposed as the most likely geometries associated with a metal having such electronic configurations. The absorption bands observed in the electronic spectrum of free cefotaxime are also observed with some shifts in the spectra of its complexes, indicating their formation. The absorption bands of free cefotaxime and its complexes were assigned to electronic transitions. The thermal analyses date strongly support the structures proposed for the complexes and indicate the formation of the corresponding metal oxide as a final decomposition product. 

2021 ◽  
Vol 23 (2) ◽  
pp. 54-59
Author(s):  
Moamen S. Refat ◽  
Safyah B. Bakare ◽  
Tariq A. Altalhi ◽  
Kehkashan Alam ◽  
Ghaferah H. Al-Hazmi

Abstract Co(II), Ni(II) and Cu(II) decxycholate complexes are interesting due to their biologically active and deliberate interest in the research due to their coordination properties. The microanalytical ‘elemental analysis’, molar conductivity, (infrared and Raman) spectroscopy, thermal analyses (TGA/DSC), UV-vis spectra, and ESR for copper(II) decxycholate complex investigations were performed in the structural assignments of Co(II), Ni(II) and Cu(II) decxycholate complexes. Reaction of the sodium deoxycholate ligand (C24H39O4Na) with three transition metal ions form the complexes of formulae, [M(C24H39O4)2(H2O)2]. xH2O where M = Co(II), Ni(II) and Cu(II) where x = 2 for Cu(II) and x = 4 in case of M = Co(II) or Ni(II) metal ions. The FTIR spectra of the complexes show that decxycholate molecule is present as bidentate ligand. Molecular docking utilizing to additionally examine the interaction of COVID-19 (6LU7) with different complexes of deoxycholic acid with Co(II), Ni(II) and Cu(II). Furthermore, in the case of Co(II) deoxycholate complex, the probe is surrounded by amino residues Met235, Pro241, Glu240, Pro108, Gln110, Phe294, and Ile152. The probe molecule of Ni(II) deoxycholate complex is sited close to amino acids Tyr126, Tyr239, Leu287, Leu272, and Lys137. For, Cu(II) deoxycholate complex, the residues of amino acids comprise of Pro132, Pro108, Gln110, Gly109, Ile200, Asn203, Val202, His246, Pro293 and Tyr154. The binding energy was determined from the docking reads for Co(II)–6LU7, Ni(II)–6LU7 and Cu(II)–6LU7 deoxycholate compounds were found to be −446.99, −500.52, −398.13 kcal mol−1 individually.


2021 ◽  
Vol 25 (7) ◽  
pp. 147-156
Author(s):  
Ajeet Kumar Maurya ◽  
Ashish Kumar Srivastava ◽  
Krishna Srivastava ◽  
Jagdish Prasad

Four mixed-ligand coordination polymer complexes of cobalt(II), copper(II), zinc(II), and cadmium(II) were synthesized by solvothermal method in 1:1:1 metal: 4,4’-bipy: 2,5-pdc molar ratio using 2,5-pyridinedicarboxylic acid (2,5-pdc) and 4,4’-bipyridine (4,4’-bipy). These complexes are viz; 1. [Co2(4,4'-bipy)(2,5-pdc)2(H2O)4]n 2. [Cu2(4,4'-bipy) (2,5-pdc)2]n 3. [Zn2(4,4'-bipy)(2,5-pdc)2(H2O)4]n and 4. [Cd3(4,4'-bipy)(2,5-pdc)2(OOCCH3)2(H2O)4]n.. All these complexes (1-4) have been characterized by elemental analyses (C,H,N), FT-IR-spectra, thermal analyses (TGA/DTA/DTG), fluorescence spectra and powder X-ray diffraction (PXRD) analyses to arrive at conclusion regarding their geometrical structure.


2015 ◽  
Vol 71 (7) ◽  
pp. 578-583 ◽  
Author(s):  
William Clegg ◽  
Ross W. Harrington ◽  
Kazem Barati ◽  
Mohammad Hossein Habibi ◽  
Morteza Montazerozohori ◽  
...  

Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff baseN,N′-bis(trans-2-nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)-N,N′-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)-N,N′-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]-κ2N,N′}(thiocyanato-κN)(triphenylphosphane-κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and1H NMR spectroscopy, and X-ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with atransconformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinatingviathe imine N atoms to the CuIatom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattenedgaucheconformation, resulting in a rather bowed shape overall for the ligand. The NCS−ligand is coordinated through its N atom. The geometry around the CuIatom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.


Chemosensors ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Ali Q. Alorabi ◽  
Mohamed Abdelbaset ◽  
Sami A. Zabin

In this paper, a Schiff base ligand 1-(2-thiophenylimino)-4-(N-dimethyl)benzene (SL1) bearing azomethine (>C=N-) and thiol (-SH) moieties capable of coordinating to metals and forming colored metal complexes was synthesized and examined as a colorimetric chemosensor. The sensing ability toward the metal ions of Cu2+, Cr3+, Fe2+ Ni2+, Co2+, Mg2+, Zn2+, Fe2+, Fe3+, NH4VO3 (V5+), Mn2+, Hg2+, Pb2+, and Al3+ was investigated in a mixture of H2O and dimethylformamide (DMF) solvent using the UV–Visible spectra monitoring method. The synthesized Schiff base ligand showed colorimetric properties with Cr3+, Fe2+, Fe3+, and Hg2+ ions, resulting in a different color change for each metal that could be identified easily with the naked eye. The UV–Vis spectra indicated a significant red shift (~69–288 nm) from the origin after the addition of the ligand to these metal ions, which may be due to ligand-to-metal charge-transfer (LMCT). On applying Job’s plot, it was indicated that the ligand binds to the metal ions in a 2:1 ligand-to-metal molar ratio. SL1 behaves as a bidentate ligand and binds through the N atom of the imine group and the S atom of the thiol group. The results indicate that the SL1 ligand is an appropriate coordination entity and can be developed for use as a chemosensor for the detection of Cr3+, Fe2+, Fe3+, and Hg2+ ions.


2021 ◽  
Vol 21 (6) ◽  
pp. 1514
Author(s):  
Waleed Abbas Jawad ◽  
Asim Alaa Abd Al-Hussein Balakit ◽  
Mahmoud Najim Abid Al-Jibouri

New transition metal complexes of cobalt(II), nickel(II), copper(II), palladium(II), cadmium(II), and platinum(IV) with bidentate ligand 4-amino-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol were synthesized and characterized by microelemental analyses (CHNS), Fourier-transform infrared (FT-IR), UV-Visible spectra, molar conductance, magnetic susceptibility and thermal analyses (TG-DSC). The ligand was synthesized by ring closure of potassium-2-(3,4,5-trimethoxybenzoyl) hydrazine carbodithioate with an excess amount of hydrazine, and then was acidified using hydrochloric acid. The ligand was used as Lewis bases to prepare metal complexes through the reaction of ratio (1:2) metal:ligand. The ligand was characterized by 1H-NMR and 13C-NMR and the previously described methods to identify the complexes. The results obtained from spectra and elemental analyses indicated the tetrahedral geometry around Cd(II) ion, square-planar for Cu(II) and Pd(II), and octahedral geometry around Co(II), Ni(II), and Pt(IV). All the metal complexes showed significant antibacterial activity in comparison with the free ligand. The antibacterial test of the platinum(IV) complex showed higher activity than other metal complexes against bacteria Staphylococcus aureus (G-positive) and Escherichia coli (G-negative).


1983 ◽  
Vol 36 (6) ◽  
pp. 1125 ◽  
Author(s):  
F Forghieri ◽  
C Preti ◽  
G Tosi ◽  
P Zannini

We report the complexes of the deprotonated cycloserine (ccs) ligand, 4-aminoisoxazolidin-3-one, with the metal ions chromium(III), manganese(II), iron(II), iron(III), cobalt(II), nicke1(II), zinc(II), zirconium(IV), palladium(II), silver(I), cadmium(II), osmium(III), platinum(II) and mercury(II). The tentative structures of the complexes have been assigned on the basis of analytical, spectral(u.v.- visible, i.r. and far i.r.) and magnetic data, and of thermal analyses (t.g. and d.t.g.). These complexes appear to contain ccs as an uninegative bidentate ligand forming five-membered rings in which the O- and the NH2 groups bind to the metals. The ligand field parameters have been evaluated and are in keeping with the proposed structures; they confirm the presence of oxygen-and nitrogen-containing chromophores.


2020 ◽  
Vol 9 (4) ◽  
pp. 40-43
Author(s):  
N. K. Yuldasheva ◽  
S. D. Gusakova ◽  
D. Kh. Nurullaeva ◽  
N. T. Farmanova ◽  
R. P. Zakirova ◽  
...  

Introduction. Lipids are a widespread group of biologically active substances in nature, making up the bulk of the organic substances of all living organisms. They accumulate in plants in seeds, as well as in fruits and perform a number of vital functions: they are the main components of cell membranes and the energy reserve for the body.Aim. Study of neutral lipids of sown oats (Avena sativa L.).Materials and methods. The objects of the study were fruits (grains) of oats of the sown variety "Tashkent 1," harvested in the Republic of Uzbekistan. Results and discussions. Neutral lipids of oat grains have been found to contain 13 fatty acids with a predominance of the sum of oleic, linolenic and linoleic acids. The total degree of unsaturation was almost 78%. Absorption bands characteristic of these substances were observed in the IR spectrum of MEGC.Conclusion. According to the results of the NL analysis, oat grains consisted of triacylglycerides and free LCDs, which were accompanied by hydrocarbons, phytosterols, triterpenoids and tocopherols.


2003 ◽  
Vol 68 (9) ◽  
pp. 1647-1662 ◽  
Author(s):  
Valeria Amendola ◽  
Massimo Boiocchi ◽  
Yuri Diaz Fernandez ◽  
Carlo Mangano ◽  
Piersandro Pallavicini

The bis-bidentate ligand R,S-1,2-diphenyl-N,N'-bis(2-quinolinemethylidene)ethane-1,2-diamine (ligand 4), containing two (iminomethyl)quinoline moieties separated by a cis-1,2-diphenylethylene spacer, forms stable complexes with both CuI and CuII. With CuII, the monomeric 1:1 complex [CuII(4)]2+ is obtained both in CH3CN and CH2Cl2. With CuI and overall 1:1 metal/ligand molar ratio, an equilibrium mixture is obtained in CH3CN, consisting of [CuI(4)2]+, [CuI2(4)2]2+ and [CuI2(4)(CH3CN)4]2+. The preponderant species is the two-metal one-ligand "open" complex [CuI2(4)(CH3CN)4]2+, in which each Cu+ cation is coordinated in a tetrahedral fashion by one (iminomethyl)quinoline unit and by two CH3CN molecules. Precipitation from the equilibrium mixture yields only crystals of [CuI2(4)(CH3CN)4](ClO4)2·2CH3CN, whose crystal and molecular structures have been determined. On the other hand, in the poorly coordinating CH2Cl2 solvent, only the dimeric helical [CuI2(4)2]2+ complex is obtained, when the overall metal/ligand 1:1 molar ratio is chosen. Addition of large quantities of acetonitrile to solutions of [CuI2(4)2]2+ in dichlorometane results in the formation of [CuI2(4)(CH3CN)4]2+, i.e. in the solvent-driven disassembling of the CuI helicate. While electrochemistry in CH3CN is poorly defined due to the presence of more than one CuI species, cyclic voltammetry experiments carried out in CH2Cl2 revealed a well defined behavior, with irreversible oxidation of [CuI2(4)2]2+ and irreversible reduction of [CuII(4)]2+ taking place at separate potentials (∆E ≈ 700 mV). Irreversibility and separation of the redox events are due to the self-assembling and disassembling processes following the reduction and oxidation, respectively.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Zahmatkesh ◽  
Abdol Reza Hajipour

AbstractPyromellitic dianhydride (1) was reacted with L-leucine (2) to result in [N,N'-(pyromellitoyl)-bis-L-leucine diacid] (3). This compound (3) was converted to N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride (4) by reaction with thionyl chloride. The microwave-assisted polycondensation of this diacid chloride (4) with polyethyleneglycol-diol (PEG-200) and/or three synthetic bisphenols furnish a series of new PEIs and Co-PEIs in a laboratory microwave oven (Milestone). The resulting polymers and copolymers have inherent viscosities in the range of 0.31- 0.53 dl g-1. These polymers are optically active, thermally stable and soluble in polar aprotic solvents such as DMF, DMSO, NMP, DMAc and sulfuric acid. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation and thermal analyses. Some structural characterizations and physical properties of these optically active PEIs and Co-PEIs are reported.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 22-31
Author(s):  
Seema Gautam ◽  
Sulekh Chandra ◽  
Jugmendra Singh ◽  
Navneet Manav ◽  
Vinod K Paliwal ◽  
...  

Structure and biological application based analysis has been carried out for Schiff’s base ligand containing nitrogen and sulphur donor atoms and also for a series of its coordination compounds. Ligand benzil-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L) has been prepared and structural features of ligand investigated by elemental analyses, IR, 1 H-NMR, mass spectra and molecular modeling studies. The chemical reaction of the prepared ligand with metal ions afforded mononuclear coordination compounds of Mn(II) and Co(II) metal ions. The characterization of the coordination compounds is being based on the techniques i.e. elemental analysis, infra-red, UV-visible as well as melting point, molar conductivity and magnetic moment measurement. A computational study has been done to understand the miscellaneous coordination modes of ligand to metal ions. Characterization result shows that coordination compounds exhibit a six coordinated geometrical arrangement i.e. octahedral geometry. The biological inhibition zone (antifungal and antibacterial activities) of synthesized compounds, i.e. ligand and its coordination compounds, has been monitored using well diffusion technique


Sign in / Sign up

Export Citation Format

Share Document