scholarly journals Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system

2020 ◽  
Vol 4 (5) ◽  
pp. 1-9
Author(s):  
JingXing Fang ◽  
◽  
Feng Qian ◽  
HaiMing Zhang
2014 ◽  
Vol 9 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Satoshi Ide ◽  
◽  
Hideo Aochi ◽  

Earthquakes occur in a complex hierarchical fault system, meaning that a realistic mechanically-consistent model is required to describe heterogeneity simply and over a wide scale. We developed a simple conceptual mechanical model using fractal circular patches associated with fracture energy on a fault plane. This model explains the complexity and scaling relation in the dynamic rupture process. We also show that such a fractal patch model is useful in simulating longterm seismicity in a hierarchal fault system by using external loading. In these studies, an earthquake of any magnitude appears as a completely random cascade growing from a small patch to larger patches. This model is thus potentially useful as a benchmarking scenario for evaluating probabilistic gain in probabilistic earthquake forecasts. The model is applied to the real case of the 2011 Tohoku-Oki earthquake based on prior information from a seismicity catalog to reproduce the complex rupture process of this very large earthquake and its resulting ground motion. Provided that a high-quality seismicity catalog is available for other regions, similar approach using this conceptual model may provide scenarios for other potential large earthquakes.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


Author(s):  
Percy Galvez ◽  
Anatoly Petukhin ◽  
Paul Somerville ◽  
Jean-Paul Ampuero ◽  
Ken Miyakoshi ◽  
...  

ABSTRACT Realistic dynamic rupture modeling validated by observed earthquakes is necessary for estimating parameters that are poorly resolved by seismic source inversion, such as stress drop, rupture velocity, and slip rate function. Source inversions using forward dynamic modeling are increasingly used to obtain earthquake rupture models. In this study, to generate a large number of physically self-consistent rupture models, rupture process of which is consistent with the spatiotemporal heterogeneity of stress produced by previous earthquakes on the same fault, we use multicycle simulations under the rate and state (RS) friction law. We adopt a one-way coupling from multicycle simulations to dynamic rupture simulations; the quasidynamic solver QDYN is used to nucleate the seismic events and the spectral element dynamic solver SPECFEM3D to resolve their rupture process. To simulate realistic seismicity, with a wide range of magnitudes and irregular recurrence, several realizations of 2D-correlated heterogeneous random distributions of characteristic weakening distance (Dc) in RS friction are tested. Other important parameters are the normal stress, which controls the stress drop and rupture velocity during an earthquake, and the maximum value of Dc, which controls rupture velocity but not stress drop. We perform a parametric study on a vertical planar fault and generate a set of a hundred spontaneous rupture models in a wide magnitude range (Mw 5.5–7.4). We validate the rupture models by comparison of source scaling, ground motion (GM), and surface slip properties to observations. We compare the source-scaling relations between rupture area, average slip, and seismic moment of the modeled events with empirical ones derived from source inversions. Near-fault GMs are computed from the source models. Their peak ground velocities and peak ground accelerations agree well with the ground-motion prediction equation values. We also obtain good agreement of the surface fault displacements with observed values.


2016 ◽  
Vol 5 (1) ◽  
pp. 76 ◽  
Author(s):  
Benjamin Patrick Hooks

<span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">Three-dimensional thermo-mechanical numerical simulations of the ongoing Yakutat–North America collision are used to identify the role of surface processes in triggering localized rapid uplift, exhumation, and strain observed within the St. Elias orogen of southern Alaska. Thermochronological data reveal localized rapid exhumation associated with the Seward-Malaspina and Hubbard Glaciers within a tectonic corner structure where transpressional motion to the south along the Fairweather Fault system transitions to shortening to the north and west within the active fold-and-thrust belt of the St. Elias orogen. The modeled deformation patterns are characteristic of oblique convergence within a tectonic corner, recording the transition from simple shear to contractional strain within a zone spatially consistent with the highest exhumation rates suggesting the corner geometry is the primary control of strain partitioning.</span><span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">The relative roles of surface-related processes versus tectonics-related processes in the development of this pattern of deformation were tested with the inclusion of an erosional surface model. The presence of surface processes enhanced the uplift and development of a localized rapid exhumation. When spatially and temporally erosion models are employed, the location of maxima is shifted in response. This indicates that efficient erosion, and resultant deposition and material advection can influence the localization of strain and uplift.</span>


2020 ◽  
Author(s):  
Thomas Ulrich ◽  
Bo Li ◽  
Alice-Agnes Gabriel

&lt;p&gt;Back-projection uses the time-reversal property of the seismic wavefield recorded at large aperture dense seismic arrays. Seismic energy radiation is imaged by applying array beam-forming techniques. The spatio-temporal rupture complexity of large earthquakes can be imaged simply and rapidly with a limited number of assumptions, which makes back-projection techniques an important tool of modern seismology. However, back-projection analyses exhibit frequency and array dependency (e.g. Wu et al., AGU19). In addition, the method relies on station network geometry and data quality and can suffer from imaging artifacts (e.g., Fan and Shearer, 2017) and back-projection results may not be consistently interpreted.&lt;/p&gt;&lt;p&gt;The Mw7.5 Palu, Sulawesi earthquake that occurred on September 28, 2018, ruptured a 180 km long section of the Palu-Koro fault. The earthquake triggered a localized but powerful tsunami within Palu Bay, which swept away houses and buildings. The supershear earthquake and unexpected tsunami led to more than 4000 fatalities. Ulrich et al. (2019) propose a physics-based, coupled earthquake-tsunami scenario of the event, tightly constrained by observations. The model matches key observed earthquake characteristics, including moment magnitude, rupture duration, fault plane solution, teleseismic waveforms, and inferred horizontal ground displacements. It suggests that time-dependent earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay.&lt;/p&gt;&lt;p&gt;Back-projection has been used to track the rupture propagation of the Palu earthquake. Bao et al. (2019) image unilateral rupture traveling at a supershear rupture speed. Their results show array dependent ruptures, from a rather relatively linear rupture using the Australian array, to a spatio-temporally more scattered image using the seismic array in Turkey. In addition, they do not resolve any portion of the rupture as traveling at sub-Rayleigh speeds, while Wei et al. (AGU19) suggest a gradually accelerating rupture.&lt;/p&gt;&lt;p&gt;In this study, we build upon the dynamic rupture model of Ulrich et al. (2019) to investigate the reliability of standard back-projection techniques using a realistic and perfectly known earthquake model. In particular, we investigate whether or not rupture transfers across the segmented fault system, and the effect of specific geometric features of the fault system, such as fault bends, on rupture dynamics, leave a clear signal on the inferred beam power. Also, we investigate the effect of secondary phases, such as reflections from the free-surface or from fault segment boundaries, naturally captured by dynamic rupture modeling. In addition, we study the effect of small-scale source heterogeneities on the back-projection results by including different levels of fault roughness in the dynamic rupture simulations. Finally, we investigate the array dependence of back-projection results.&lt;/p&gt;&lt;p&gt;Overall, this study should help to better understand which features of rupture dynamics back-projection can capture. Our results are a first step towards fundamental analysis to better understand which features can be captured by back-projection and to provide guidelines for back-projection interpretation.&lt;/p&gt;


2004 ◽  
Vol 31 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Wenbo Zhang ◽  
Tomotaka Iwata ◽  
Kojiro Irikura ◽  
Arben Pitarka ◽  
Haruko Sekiguchi

2017 ◽  
Vol 40 (12) ◽  
pp. 2008-2018 ◽  
Author(s):  
M. Mirzaei ◽  
S. Tavakoli ◽  
M. Najafi

Geology ◽  
2015 ◽  
Vol 43 (10) ◽  
pp. 891-894 ◽  
Author(s):  
Vasileios Chatzaras ◽  
Basil Tikoff ◽  
Julie Newman ◽  
Anthony C. Withers ◽  
Martyn R. Drury

Sign in / Sign up

Export Citation Format

Share Document