Modeling Earthquakes Using Fractal Circular Patch Models with Lessons from the 2011 Tohoku-Oki Earthquake

2014 ◽  
Vol 9 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Satoshi Ide ◽  
◽  
Hideo Aochi ◽  

Earthquakes occur in a complex hierarchical fault system, meaning that a realistic mechanically-consistent model is required to describe heterogeneity simply and over a wide scale. We developed a simple conceptual mechanical model using fractal circular patches associated with fracture energy on a fault plane. This model explains the complexity and scaling relation in the dynamic rupture process. We also show that such a fractal patch model is useful in simulating longterm seismicity in a hierarchal fault system by using external loading. In these studies, an earthquake of any magnitude appears as a completely random cascade growing from a small patch to larger patches. This model is thus potentially useful as a benchmarking scenario for evaluating probabilistic gain in probabilistic earthquake forecasts. The model is applied to the real case of the 2011 Tohoku-Oki earthquake based on prior information from a seismicity catalog to reproduce the complex rupture process of this very large earthquake and its resulting ground motion. Provided that a high-quality seismicity catalog is available for other regions, similar approach using this conceptual model may provide scenarios for other potential large earthquakes.

2021 ◽  
Author(s):  
Ruth Harris ◽  
Michael Barall ◽  
David Ponce ◽  
Diane Moore ◽  
Russell Graymer ◽  
...  

<p>The Rodgers Creek-Hayward-Calaveras-Northern Calaveras fault system in California dominates the hazard posed by active faults in the San Francisco Bay Area. Given that this fault system runs through a densely populated area, a large earthquake in this region is likely to affect millions of people. This study produced scenarios of large earthquakes in this fault system, using spontaneous (dynamic) rupture simulations. These types of physics-based computational simulations require information about the 3D fault geometry, physical rock properties, fault friction, and initial stress conditions. In terms of fault geometry, the well-connected multi-fault system includes the Hayward fault, at its southern end the Central and Northern Calaveras faults, and at its northern end the Rodgers Creek fault. Geodetic investigations of the fault system’s slip-rate pattern provide images of where the fault surfaces at depth are creeping or locked interseismically, and this helped us choose appropriate initial stress conditions for our simulations. A 3D geologic model of the fault system provides the 3D rock units and fault structure at depth, while field samples from rocks collected at Earth’s surface provide frictional parameters. We used this suite of information to investigate the behavior of large earthquake ruptures nucleating at various positions along this partially creeping fault system. We found that large earthquakes starting on the Hayward fault or on the Rodgers Creek fault may be slowed, stopped, or unaffected in their progress, depending on how much energy is released by the creeping regions of the Hayward and Central Calaveras faults during the time between large earthquakes. Large earthquakes starting on either the Hayward fault or the Rodgers Creek faults will likely not rupture the Northern Calaveras fault, and large earthquakes starting on either the Northern Calaveras fault or the Central Calaveras fault will likely remain confined to those fault segments.</p>


1971 ◽  
Vol 61 (4) ◽  
pp. 851-859 ◽  
Author(s):  
R. W. E. Green ◽  
S. Bloch

abstract Aftershocks following the Ceres earthquake of September 29, 1969, (Magnitude 6.3) were monitored using a number of portable seismic recording stations. Earthquakes of this magnitude are rare in South Africa. The event occurred in a relatively densely-populated part of the Republic, and resulted in nine deaths and considerable damage. Accurate locations of some 125 aftershocks delineate a linear, almost vertical fault plane. The volume of the aftershock region is 3 × 9 × 20 km3 with the depth of the aftershocks varying from surface to 9 km. Aftershocks following the September event had almost ceased when another large earthquake (Magnitude 5.7) occurred on April 14, 1970. Following this event, the frequency and magnitude of aftershocks increased, and they were located on a limited portion of the same fault system delineated by the September 29th aftershocks. Previously-mapped faults do not correlate simply with the fault zone indicated by the aftershock sequence.


2021 ◽  
Author(s):  
Tira Tadapansawut ◽  
Yagi Yuji ◽  
Ryo Okuwaki ◽  
Shinji Yamashita ◽  
Kousuke Shimizu

The earthquake with a moment magnitude 6.2 that occurred in northern Thailand on 5 May 2014 is the largest recorded in Thailand by modern seismographs; the source is located in the multi-segmented complex fault system of the Phayao fault zone in the northern Thai province of Chiang Rai. This geological setting is appropriate environment for investigating a compound rupture process associated with a geometrically complex fault system in a magnitude-6-class earthquake. To understand in detail the rupture process of the 2014 Thailand earthquake, we elaborate the flexible finite-fault inversion method, used it to invert the globally-observed teleseismic P waveforms, and resolved for the spatiotemporal distribution of both the slip and the fault geometry. The complex rupture process consists of two distinct coseismic slip episodes that evolved along two discontinuous fault planes; these planes coincide with the lineations of the aftershock distribution. The first episode originated at the hypocenter and the rupture propagated south along the north-northeast to south-southwest fault plane. The second episode was triggered at around 5 km north from the epicenter and the rupture propagated along the east-northeast to west-southwest fault plane and terminated at the west end of the source area at 4.5 s hypocentral time. The fault system derived from our finite-fault model suggests geometric complexities including bends. The derived spatiotemporal orientation of the principal stress axis shows different lineations within the two rupture areas and heterogeneity at their edges. This geological setting may have caused the perturbation of the rupture propagation and the triggering of the distinct rupture episodes. Our source model of the 2014 Thailand earthquake suggests that even in the case of small-scale earthquakes, the rupture evolution can be complex when the underlying fault geometry is multiplex.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yoshihisa Iio ◽  
Satoshi Matsumoto ◽  
Yusuke Yamashita ◽  
Shin’ichi Sakai ◽  
Kazuhide Tomisaka ◽  
...  

AbstractAfter a large earthquake, many small earthquakes, called aftershocks, ensue. Additional large earthquakes typically do not occur, despite the fact that the large static stress near the edges of the fault is expected to trigger further large earthquakes at these locations. Here we analyse ~10,000 highly accurate focal mechanism solutions of aftershocks of the 2016 Mw 6.2 Central Tottori earthquake in Japan. We determine the location of the horizontal edges of the mainshock fault relative to the aftershock hypocentres, with an accuracy of approximately 200 m. We find that aftershocks rarely occur near the horizontal edges and extensions of the fault. We propose that the mainshock rupture was arrested within areas characterised by substantial stress relaxation prior to the main earthquake. This stress relaxation along fault edges could explain why mainshocks are rarely followed by further large earthquakes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Sun ◽  
Shunping Pei ◽  
Zhongxiong Cui ◽  
Yongshun John Chen ◽  
Yanbing Liu ◽  
...  

AbstractDetailed crustal structure of large earthquake source regions is of great significance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high-resolution three-dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double-difference seismic tomography method. High-velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high-velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high-velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies.


1970 ◽  
Vol 60 (5) ◽  
pp. 1669-1699 ◽  
Author(s):  
Leonardo Seeber ◽  
Muawia Barazangi ◽  
Ali Nowroozi

Abstract This paper demonstrates that high-gain, high-frequency portable seismographs operated for short intervals can provide unique data on the details of the current tectonic activity in a very small area. Five high-frequency, high-gain seismographs were operated at 25 sites along the coast of northern California during the summer of 1968. Eighty per cent of 160 microearthquakes located in the Cape Mendocino area occurred at depths between 15 and 35 km in a well-defined, horizontal seismic layer. These depths are significantly greater than those reported for other areas along the San Andreas fault system in California. Many of the earthquakes of the Cape Mendocino area occurred in sequences that have approximately the same magnitude versus length of faulting characteristics as other California earthquakes. Consistent first-motion directions are recorded from microearthquakes located within suitably chosen subdivisions of the active area. Composite fault plane solutions indicate that right-lateral movement prevails on strike-slip faults that radiate from Cape Mendocino northwest toward the Gorda basin. This is evidence that the Gorda basin is undergoing internal deformation. Inland, east of Cape Mendocino, a significant component of thrust faulting prevails for all the composite fault plane solutions. Thrusting is predominant in the fault plane solution of the June 26 1968 earthquake located along the Gorda escarpement. In general, the pattern of slip is consistent with a north-south crustal shortening. The Gorda escarpment, the Mattole River Valley, and the 1906 fault break northwest of Shelter Cove define a sharp bend that forms a possible connection between the Mendocino escarpment and the San Andreas fault. The distribution of hypocenters, relative travel times of P waves, and focal mechanisms strongly indicate that the above three features are surface expressions of an important structural boundary. The sharp bend in this boundary, which is concave toward the southwest, would tend to lock the dextral slip along the San Andreas fault and thus cause the regional north-south compression observed at Cape Mendocino. The above conclusions support the hypothesis that dextral strike-slip motion along the San Andreas fault is currently being taken up by slip along the Mendocino escarpment as well as by slip along northwest trending faults in the Gorda basin.


1981 ◽  
Vol 71 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Allan G. Lindh ◽  
David M. Boore

abstract A reanalysis of the available data for the 1966 Parkfield, California, earthquake (ML=512) suggests that although the ground breakage and aftershocks extended about 40 km along the San Andreas Fault, the initial dynamic rupture was only 20 to 25 km in length. The foreshocks and the point of initiation of the main event locate at a small bend in the mapped trace of the fault. Detailed analysis of the P-wave first motions from these events at the Gold Hill station, 20 km southeast, indicates that the bend in the fault extends to depth and apparently represents a physical discontinuity on the fault plane. Other evidence suggests that this discontinuity plays an important part in the recurrence of similar magnitude 5 to 6 earthquakes at Parkfield. Analysis of the strong-motion records suggests that the rupture stopped at another discontinuity in the fault plane, an en-echelon offset near Gold Hill that lies at the boundary on the San Andreas Fault between the zone of aseismic slip and the locked zone on which the great 1857 earthquake occurred. Foreshocks to the 1857 earthquake occurred in this area (Sieh, 1978), and the epicenter of the main shock may have coincided with the offset zone. If it did, a detailed study of the geological and geophysical character of the region might be rewarding in terms of understanding how and why great earthquakes initiate where they do.


1976 ◽  
Vol 66 (6) ◽  
pp. 1931-1952
Author(s):  
Donald J. Stierman ◽  
William L. Ellsworth

abstract The ML 6.0 Point Mugu, California earthquake of February 21, 1973 and its aftershocks occurred within the complex fault system that bounds the southern front of the Transverse Ranges province of southern California. P-wave fault plane solutions for 51 events include reverse, strike slip and normal faulting mechanisms, indicating complex deformation within the 10-km broad fault zone. Hypocenters of 141 aftershocks fail to delineate any single fault plane clearly associated with the main shock rupture. Most aftershocks cluster in a region 5 km in diameter centered 5 km from the main shock hypocenter and well beyond the extent of fault rupture estimated from analysis of body-wave radiation. Strain release within the imbricate fault zone was controlled by slip on preexisting planes of weakness under the influence of a NE-SW compressive stress.


Sign in / Sign up

Export Citation Format

Share Document