scholarly journals Reaction of the preloaded rotation shell with the rigid nose part of the apparatus to a shock wave in the liquid

2021 ◽  
Vol 24 (4) ◽  
pp. 61-74
Author(s):  
I. K. Turkin ◽  
D. A. Rogov ◽  
V. A. Grachev

The article investigates the problem of hydro-elastic interaction of a weak shock wave with a rigid nosed rotation shell preloaded with axial forces. The shell is enclosed in a rigid parabolic screen, i.e. the impact of the end face and the shock wave diffraction are not considered. Liquid is regarded to be perfectly compressible. Its applied summing hydrodynamic pressure during complex interaction with the shell surface can be classified into the incident, reflected and radiated waves. The problem of hydro-elastic interaction of these shock fronts with a preloaded parabolic rigid nosed shell in a related setting is reduced to the solution of the wave equations of nonlinear system of equations for shell motion under particular initial and boundary conditions, in which the dimensionless displacement of this nose section under the impact of hydrodynamic forces is determined by integrating its motion equation. The equations, describing the dependences of nose section displacements on shock wave interaction time, take into account generalized hydrodynamic forces, including the second category directly related to the mass of the attached fluid. Determination of stress-strain state in case of interaction with the shock wave in the liquid of elastic rotation paraboloid in the form of the shell containing a rigid insertion in the nose section is reduced to the solution of a nonlinear equations system of shell motion considering the boundary conditions along fastenings at the end face of the shell and interface conditions of the shell and insertion. Dimensionless displacements of the nose section caused by hydrodynamic forces are defined by integrating the equations of motion under the initial conditions along insertion offsets in the axial directions.

2005 ◽  
Vol 18 (7) ◽  
pp. 917-933 ◽  
Author(s):  
Wanli Wu ◽  
Amanda H. Lynch ◽  
Aaron Rivers

Abstract There is a growing demand for regional-scale climate predictions and assessments. Quantifying the impacts of uncertainty in initial conditions and lateral boundary forcing data on regional model simulations can potentially add value to the usefulness of regional climate modeling. Results from a regional model depend on the realism of the driving data from either global model outputs or global analyses; therefore, any biases in the driving data will be carried through to the regional model. This study used four popular global analyses and achieved 16 driving datasets by using different interpolation procedures. The spread of the 16 datasets represents a possible range of driving data based on analyses to the regional model. This spread is smaller than typically associated with global climate model realizations of the Arctic climate. Three groups of 16 realizations were conducted using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) in an Arctic domain, varying both initial and lateral boundary conditions, varying lateral boundary forcing only, and varying initial conditions only. The response of monthly mean atmospheric states to the variations in initial and lateral driving data was investigated. Uncertainty in the regional model is induced by the interaction between biases from different sources. Because of the nonlinearity of the problem, contributions from initial and lateral boundary conditions are not additive. For monthly mean atmospheric states, biases in lateral boundary conditions generally contribute more to the overall uncertainty than biases in the initial conditions. The impact of initial condition variations decreases with the simulation length while the impact of variations in lateral boundary forcing shows no clear trend. This suggests that the representativeness of the lateral boundary forcing plays a critical role in long-term regional climate modeling. The extent of impact of the driving data uncertainties on regional climate modeling is variable dependent. For some sensitive variables (e.g., precipitation, boundary layer height), even the interior of the model may be significantly affected.


2011 ◽  
Vol 139 (2) ◽  
pp. 403-423 ◽  
Author(s):  
Benoît Vié ◽  
Olivier Nuissier ◽  
Véronique Ducrocq

Abstract This study assesses the impact of uncertainty on convective-scale initial conditions (ICs) and the uncertainty on lateral boundary conditions (LBCs) in cloud-resolving simulations with the Application of Research to Operations at Mesoscale (AROME) model. Special attention is paid to Mediterranean heavy precipitating events (HPEs). The goal is achieved by comparing high-resolution ensembles generated by different methods. First, an ensemble data assimilation technique has been used for assimilation of perturbed observations to generate different convective-scale ICs. Second, three ensembles used LBCs prescribed by the members of a global short-range ensemble prediction system (EPS). All ensembles obtained were then evaluated over 31- and/or 18-day periods, and on 2 specific case studies of HPEs. The ensembles are underdispersive, but both the probabilistic evaluation of their overall performance and the two case studies confirm that they can provide useful probabilistic information for the HPEs considered. The uncertainty on convective-scale ICs is shown to have an impact at short range (under 12 h), and it is strongly dependent on the synoptic-scale context. Specifically, given a marked circulation near the area of interest, the imposed LBCs rapidly overwhelm the initial differences, greatly reducing the spread of the ensemble. The uncertainty on LBCs shows an impact at longer range, as the spread in the coupling global ensemble increases, but it also depends on the synoptic-scale conditions and their predictability.


2018 ◽  
Author(s):  
Liza I. Díaz-Isaac ◽  
Thomas Lauvaux ◽  
Kenneth J. Davis

Abstract. Atmospheric transport model errors are one of the main contributors to the uncertainty affecting CO2 inverse flux estimates. In this study, we determine the leading causes of transport errors over the US Upper Midwest with a large set of simulations generated with the Weather Research and Forecasting (WRF) mesoscale model. The various WRF simulations are performed using different meteorological driver datasets and physical parameterizations including planetary boundary layer (PBL) schemes, land surface models (LSMs), cumulus parameterizations and microphysics parameterizations. All the different model configurations were coupled to CO2 fluxes and lateral boundary conditions from the CarbonTracker inversion system to simulate atmospheric CO2 mole fractions. PBL height, wind speed, wind direction, and atmospheric CO2 mole fractions are compared to observations during a month of the summer of 2008, and statistical analyses were performed to evaluate the impact of both physics parameterizations and meteorological datasets on these variables. All of the physical parameterizations and the meteorological initial and boundary conditions contribute 3 to 4 ppm to the model-to-model variability in daytime PBL CO2 except for the microphysics parameterization which has a smaller contribution. PBL height varies across ensemble members by 300 to 400 m, and is this variability is controlled by the same physics parameterizations. Daily PBL CO2 mole fraction errors are correlated with errors in the PBL height. We show that specific model configurations systematically overestimate or underestimate the PBL height averaged across the region with biases closely correlated with the choice of LSM, PBL scheme, and CP. Domain average PBL wind speed is overestimated in nearly every model configuration. Both PBLH and PBL wind speed biases show coherent spatial variations across the Midwest, with PBLH overestimated averaged across configurations by 300–400 m in the west, and PBL winds overestimated by about 1 m/s on average in the east. We find model configurations with lower biases averaged across the domain, but no single configuration is optimal across the entire region and for all meteorological variables. We conclude that model ensembles that include multiple physics parameterizations and meteorological initial conditions are likely to be necessary to encompass the atmospheric conditions most important to the transport of CO2 in the PBL, but that construction of such an ensemble will be challenging due to ensemble biases that vary across the region.


2003 ◽  
Vol 10 (3) ◽  
pp. 211-232 ◽  
Author(s):  
T. J. Reichler ◽  
J. O. Roads

Abstract. The importance of initial state and boundary forcing for atmospheric predictability is explored on global to regional spatial scales and on daily to seasonal time scales. A general circulation model is used to conduct predictability experiments with different combinations of initial and boundary conditions. The experiments are verified under perfect model assumptions as well as against observational data. From initial conditions alone, there is significant instantaneous forecast skill out to 2 months. Different initial conditions show different predictability using the same kind of boundary forcing. Even on seasonal time scales, using observed atmospheric initial conditions leads to a substantial increase in overall skill, especially during periods with weak tropical forcing. The impact of boundary forcing on predictability is detectable after 10 days and leads to measurable instantaneous forecast skill at very long lead times. Over the Northern Hemisphere, it takes roughly 4 weeks for boundary conditions to reach the same effect on predictability as initial conditions. During events with strong tropical forcing, these time scales are somewhat shorter. Over the Southern Hemisphere, there is a strongly enhanced influence of initial conditions during summer. We conclude that the long term memory of initial conditions is important for seasonal forecasting.


1985 ◽  
Vol 17 (9) ◽  
pp. 1-12 ◽  
Author(s):  
Carl G. Enfield

Relatively immobile chemicals have been observed moving significantly faster than anticipated from hydrophobic theory. A theory is developed considering transport in three mobile fluid phases which can be used to describe this facilitated transport. The convective dispersive transport equation is solved utilizing a transformation of variables which permits utilizing existing solutions covering a wide variety of boundary conditions. The impact of the facilitated transport is demonstrated for one case where the soils organic carbon is 10%. If 2% of the fluid phase is an organic fraction, the theory developed projects that hydrophobic theory may underestimate mobility by more than 100 times. At concentrations of dissolved organic carbon normally observed in nature (5 - 10 mg/l), a measurable increased mobility is anticipated for the very immobile compounds like dioxins.


2020 ◽  
Vol 4 (41) ◽  
pp. 57-62
Author(s):  
SHAVKAT KLYCHEV ◽  
◽  
BAKHRAMOV SAGDULLA ◽  
VALERIY KHARCHENKO ◽  
VLADIMIR PANCHENKO ◽  
...  

There are needed energy (heat) accumulators to increase the efficiency of solar installations, including solar collectors (water heaters, air heaters, dryers). One of the tasks of designing heat accumulators is to ensure its minimal heat loss. The article considers the problem of determining the distribution of temperatures and heat losses by convection and radiation of the heat insulation-accumulating body (water) system for a ball heat accumulator under symmetric boundary conditions. The problem is solved numerically according to the program developed on the basis of the proposed «gap method». (Research purpose) The research purpose is in determining heat losses by convection and radiation of a two-layer ball heat accumulator with symmetric boundary conditions. (Materials and methods) Authors used the Fourier heat equation for spherical bodies. The article presents the determined boundary and initial conditions for bodies and their surfaces. (Results and discussion) The thickness of the insulation and the volume of the heat accumulator affect the dynamics and values of heat loss. The effect of increasing the thickness of the thermal insulation decreases with increasing its thickness, starting with a certain volume of the heat accumulator or with R > 0.3 meters, the heat losses change almost linearly over time. The dynamics of heat loss decreases with increasing shelf life, but the losses remain large. (Conclusions) Authors have developed a method and program for numerical calculation of heat loss and temperature over time in a spherical two-layer heat accumulator with symmetric boundary conditions, taking into account both falling and intrinsic radiation. The proposed method allows to unify the boundary conditions between contacting bodies.


The theory of the vibrations of the pianoforte string put forward by Kaufmann in a well-known paper has figured prominently in recent discussions on the acoustics of this instrument. It proceeds on lines radically different from those adopted by Helmholtz in his classical treatment of the subject. While recognising that the elasticity of the pianoforte hammer is not a negligible factor, Kaufmann set out to simplify the mathematical analysis by ignoring its effect altogether, and treating the hammer as a particle possessing only inertia without spring. The motion of the string following the impact of the hammer is found from the initial conditions and from the functional solutions of the equation of wave-propagation on the string. On this basis he gave a rigorous treatment of two cases: (1) a particle impinging on a stretched string of infinite length, and (2) a particle impinging on the centre of a finite string, neither of which cases is of much interest from an acoustical point of view. The case of practical importance treated by him is that in which a particle impinges on the string near one end. For this case, he gave only an approximate theory from which the duration of contact, the motion of the point struck, and the form of the vibration-curves for various points of the string could be found. There can be no doubt of the importance of Kaufmann’s work, and it naturally becomes necessary to extend and revise his theory in various directions. In several respects, the theory awaits fuller development, especially as regards the harmonic analysis of the modes of vibration set up by impact, and the detailed discussion of the influence of the elasticity of the hammer and of varying velocities of impact. Apart from these points, the question arises whether the approximate method used by Kaufmann is sufficiently accurate for practical purposes, and whether it may be regarded as applicable when, as in the pianoforte, the point struck is distant one-eighth or one-ninth of the length of the string from one end. Kaufmann’s treatment is practically based on the assumption that the part of the string between the end and the point struck remains straight as long as the hammer and string remain in contact. Primâ facie , it is clear that this assumption would introduce error when the part of the string under reference is an appreciable fraction of the whole. For the effect of the impact would obviously be to excite the vibrations of this portion of the string, which continue so long as the hammer is in contact, and would also influence the mode of vibration of the string as a whole when the hammer loses contact. A mathematical theory which is not subject to this error, and which is applicable for any position of the striking point, thus seems called for.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


Sign in / Sign up

Export Citation Format

Share Document