scholarly journals Technique and Software to Calculate Temperature Field in the System of Layered Cylindrical Fuel Elements

2013 ◽  
Vol 2013 (1) ◽  
pp. 54-62
Author(s):  
Vladimir Aleksandrovich Starkov ◽  
Marikhin N.Yu. Marikhin
2014 ◽  
Vol 912-914 ◽  
pp. 715-722
Author(s):  
Yi Hui Guo ◽  
Ming Tu Ma ◽  
Yi Sheng Zhang ◽  
Dian Wu Zhou ◽  
Lei Feng Song

LS-DYNA software was adopted to conduct research of numerical simulation on hot stamping of front bumper to calculate the temperature field distribution, stress field distribution, FLD figure and etc. of parts in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software was employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distribution of tools and component of multiple stamping cycles; Based on the simulation,the hot stamping mould was developed,and the front bumper components of hot forming were stamped, Compared the test results with the simulation, both the results coincide basically with same variation trend .Results obtain from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling channel system design.


2015 ◽  
Vol 724 ◽  
pp. 161-165
Author(s):  
You Ping Zhu ◽  
Shu Rong Feng ◽  
Qing Chun Shi ◽  
Jun An Su

In this paper, we proposed a new algorithm to calculate the temperature field of concrete structures with pipe-cooling system. As we know, the pretreatment of pipe model is hard and the calculation will be time-consuming. However, in this algorithm, the computing information of pipes will be included in the exist nodes of elements, so the workload of pretreatment would be reduced. Meanwhile, the finite element method (FEM) format and the formula of water temperature along pipe have been established in this paper. Iteration was not required in this method, so the computing speed will be improved too. An example has shown that this algorithm can response temperature gradient near the pipe and have good efficiency to calculate temperature field of concrete structures with pipe-cooling system.


2013 ◽  
Vol 779-780 ◽  
pp. 965-970
Author(s):  
You Liu ◽  
Jing Jing Liu ◽  
Xiao Chen

The paper took the piston of 620 single-cylinder engine as an example,a finite element model of piston was built with the help of ANSYS software. Than to calculate temperature field and and quick cold start conditions respectively[1]. Through the periodic transient thermal analysis, temperature fluctuations on the surface of the piston were derived, which indicated that the surface contacted with gas was the main temperature fluctuation area. The max temperature fluctuation can be up to 20 ° C and the wild fluctuation occurred in a distance of 2 mm from the surface of the piston. Temperatures of the piston went up according to exponential rule during the course of quick cold start, Extreme temperature fluctuations will generate huge quasi-static thermal stress.


2011 ◽  
Vol 374-377 ◽  
pp. 1955-1958
Author(s):  
Xin Jiang ◽  
Xiao Hang Liu

A representative volume element is chosen to act as the research object to analyze the temperature field of the dispersion fuel elements. The thermal analysis is carried out for the thermal behaviors using FEM. The results indicate that with the volume fraction and the heat generation rate of the fuel particles increasing, the temperature and the gradient of the temperature in the matrix and the cladding increases markedly.


Author(s):  
Yu. V. Smorchkova ◽  
E. A. Avdonina ◽  
A. V. Dedov

The paper presents the results of a numerical study of hydrodynamics and a temperature field in the model of the fuel assembly for the KLT-40S reactor installation in the transition to a fuel consisting of spherical microfuels. The optimal design of a model of a f uel assembly with microfuels for a reactor installation KLT-40S is proposed, from the position of hydrodynamics and heat transfer. The fuel assembly by external dimensions completely corresponds to the traditional assembly with rod fuel elements. The optim al parameters of the perforation of the covers that retain the pebble bed of microfuels are determined. The results of the evaluation of neutron-physical characteristics are presented. The working capacity of the KLT-40S reactor installation is shown when using fuel from microfuel elements.


Author(s):  
N. Tamura ◽  
T. Goto ◽  
Y. Harada

On account of its high brightness, the field emission electron source has the advantage that it provides the conventional electron microscope with highly coherent illuminating system and that it directly improves the, resolving power of the scanning electron microscope. The present authors have reported some results obtained with a 100 kV field emission electron microscope.It has been proven, furthermore, that the tungsten emitter as a temperature field emission source can be utilized with a sufficient stability under a modest vacuum of 10-8 ~ 10-9 Torr. The present paper is concerned with an extension of our study on the characteristics of the temperature field emitters.


Author(s):  
M.V. Parthasarathy ◽  
C. Daugherty

The versatility of Low Temperature Field Emission SEM (LTFESEM) for viewing frozen-hydrated biological specimens, and the high resolutions that can be obtained with such instruments have been well documented. Studies done with LTFESEM have been usually limited to the viewing of small organisms, organs, cells, and organelles, or viewing such specimens after fracturing them.We use a Hitachi 4500 FESEM equipped with a recently developed BAL-TEC SCE 020 cryopreparation/transfer device for our LTFESEM studies. The SCE 020 is similar in design to the older SCU 020 except that instead of having a dedicated stage, the SCE 020 has a detachable cold stage that mounts on to the FESEM stage when needed. Since the SCE 020 has a precisely controlled lock manipulator for transferring the specimen table from the cryopreparation chamber to the cold stage in the FESEM, and also has a motor driven microtome for precise control of specimen fracture, we have explored the feasibility of using the LTFESEM for multiple-fracture studies of the same sample.


Sign in / Sign up

Export Citation Format

Share Document