scholarly journals Spatial dynamics model of land use and land cover changes: A comparison of CA, ANN, and ANN-CA

2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Moh. Dede ◽  
Chay Asdak ◽  
Iwan Setiawan

Land use and land cover (LULC) changes through built-up area expansion always increases linearly with land demand as a consequence of population growth and urbanization. Cirebon City is a center for Ciayumajakuning Region that continues to grow and exceeds its administrative boundaries. This phenomenon has led to peri-urban regions which show urban and rural interactions. This study aims to analyze (1) the dynamics of LULC changes using cellular automata (CA), artificial neural network (ANN), and ANN-CA; (2) the influential factors (drivers); and (3) change probability in the period 2030 and 2045 for Cirebon’s peri-urban. We used logistic regression as quantitative approach to analyze the interaction of drivers and LULC changes. The LULC data derived from Landsat series satellite imagery in 1999-2009 and 2009-2019, validation of dynamic spatial model refers to 100 LULC samples. This research shows that LULC changes are dominated by built-up area expansion which causes plantations and agricultural land to decrease. The drivers have a simultaneous effect on LULC changes with r-square of 0.43, where land slope, distance from existing built-up area, distance from CBD, and accessibility are significant triggers. LULC simulation of CA algorithm is the best model than ANN and ANN-CA based on overall accuracy and overall accuracy (0.96, 0.75, 0.73 and 0.95, 0.66, 0.66 respectively), it reveals urban sprawl through the ribbon and compact development. The average probability of built-up area expansion is 0.18 (2030) and 0.19 (2045). If there is no intervention in spatial planning, this phenomenon will decrease productive agricultural lands in Cirebon's peri-urban.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jane Ferah Gondwe ◽  
Sun Li ◽  
Rodger Millar Munthali

Blantyre City has experienced a wide range of changes in land use and land cover (LULC). This study used Remote Sensing (RS) to detect and quantify LULC changes that occurred in the city throughout a twenty-year study period, using Landsat 7 Enhanced Thematic Mapper (ETM+) images from 1999 and 2010 and Landsat 8 Operational Land Imager (OLI) images from 2019. A supervised classification method using an Artificial Neural Network (ANN) was used to classify and map LULC types. The kappa coefficient and the overall accuracy were used to ascertain the classification accuracy. Using the classified images, a postclassification comparison approach was used to detect LULC changes between 1999 and 2019. The study revealed that built-up land and agricultural land increased in their respective areas by 28.54 km2 (194.81%) and 35.80 km2 (27.16%) with corresponding annual change rates of 1.43 km·year−1 and 1.79 km·year−1. The area of bare land, forest land, herbaceous land, and waterbody, respectively, decreased by 0.05%, 90.52%, 71.67%, and 6.90%. The LULC changes in the study area were attributed to urbanization, population growth, social-economic growth, and climate change. The findings of this study provide information on the changes in LULC and driving factors, which Blantyre City authorities can utilize to develop sustainable development plans.


2019 ◽  
Vol 11 (3) ◽  
pp. 832 ◽  
Author(s):  
Maggie G. Munthali ◽  
Nerhene Davis ◽  
Abiodun M. Adeola ◽  
Joel O. Botai ◽  
Jonathan M. Kamwi ◽  
...  

Research on Land Use and Land Cover (LULC) dynamics, and an understanding of the drivers responsible for these changes, are very crucial for modelling future LULC changes and the formulation of sustainable and robust land-management strategies and policy decisions. This study adopted a mixed method consisting of remote sensing and Geographic Information System (GIS)-based analysis, focus-group discussions, key informant interviews, and semi-structured interviews covering 586 households to assess LULC dynamics and associated LULC change drivers across the Dedza district, a central region of Malawi. GIS-based analysis of remotely sensed data revealed that barren land and built-up areas extensively increased at the expense of agricultural and forest land between 1991 and 2015. Analysis of the household-survey results revealed that the perceptions of respondents tended to validate the observed patterns during the remotely sensed data-analysis phase of the research, with 57.3% (n = 586) of the respondents reporting a decline in agricultural land use, and 87.4% (n = 586) observing a decline in forest areas in the district. Furthermore, firewood collection, charcoal production, population growth, and poverty were identified as the key drivers of these observed LULC changes in the study area. Undoubtedly, education has emerged as a significant factor influencing respondents’ perceptions of these drivers of LULC changes. However, unsustainable LULC changes observed in this study have negative implications on rural livelihoods and natural-resource management. Owing to the critical role that LULC dynamics play to rural livelihoods and the ecosystem, this study recommends further research to establish the consequences of these changes. The present study and future research will support decision makers and planners in the design of tenable and coherent land-management strategies.


2018 ◽  
Vol 7 (4.34) ◽  
pp. 159
Author(s):  
Kabir Abdulkadir Gidado ◽  
Mohd Khairul Amri Kamarudin ◽  
Nik Ahmad Firdausaq ◽  
Aliyu Muhammad Nalado ◽  
Ahmad Shakir Mohd Saudi ◽  
...  

The land-use and land-cover (LULC) pattern of an area is an outcome of natural and socio-economic factors and their use spatially by man; this LULC varies from the forest, water body, agricultural land and so on. Remote Sensing (RS) and Geographical Information System (GIS) studies have predominantly focused on providing the technical knowledge of, where, and the type of LULC change that has occurred and its impacts on man and the environment. Knowledge about LULC changes is essential for understanding the relationships and interfaces between humans and the natural environment. The purpose of this article is to review the previous studies of the spatiotemporal LULC changes. However, thirty (30) articles were reviewed from 2011 to 2017. However, these articles studied the LULC, classification, changes and change detection analysis, using different methods and software of RS and G.I.S. The finding shows that these articles have overall accuracy assessment ranges from 75% to 95% validations. Also, supervised classification in Maximum Likelihood Algorithm method was mostly employed for the LULC classification. Moreover, these reviewed articles confirmed that LULC changes are imminent as a result of both natural and human factors which lead to increase and decrease of one LULC cover to another. Therefore proper monitoring of LULC changes when applied help the relevant government bodies, agencies and environmental managers utilise the environment to the fullest.  


2021 ◽  
Vol 9 ◽  
Author(s):  
Edmond Alavaisha ◽  
Victor Mbande ◽  
Lowe Börjeson ◽  
Regina Lindborg

Increasing agricultural land use intensity is one of the major land use/land cover (LULC) changes in wetland ecosystems. LULC changes have major impacts on the environment, livelihoods and nature conservation. In this study, we evaluate the impacts of investments in small-scale irrigation schemes on LULC in relation to regional development in Kilombero Valley, Tanzania. We used Remote Sensing (RS) and Geographical Information System (GIS) techniques together with interviews with Key Informants (KI) and Focus Group Discussion (FGD) with different stakeholders to assess the historical development of irrigation schemes and LULC change at local and regional scales over 3 decades. Overall, LULC differed over time and with spatial scale. The main transformation along irrigation schemes was from grassland and bushland into cultivated land. A similar pattern was also found at the regional valley scale, but here transformations from forest were more common. The rate of expansion of cultivated land was also higher where investments in irrigation infrastructure were made than in the wider valley landscape. While discussing the effects of irrigation and intensification on LULC in the valley, the KI and FGD participants expressed that local investments in intensification and smallholder irrigation may reduce pressure on natural land cover such as forest being transformed into cultivation. Such a pattern of spatially concentrated intensification of land use may provide an opportunity for nature conservation in the valley and likewise contribute positively to increased production and improve livelihoods of smallholder farmers.


2020 ◽  
Vol 12 (11) ◽  
pp. 4490
Author(s):  
Jamal Suliman Alawamy ◽  
Siva K. Balasundram ◽  
Ahmad Husni Mohd. Hanif ◽  
Christopher Teh Boon Sung

The region of Al-Jabal Al-Akhdar in northeastern Libya has undergone rapid, wide-ranging changes in the land use and land cover (LULC) intensified by the conversion of natural resources for food purpose, urbanization, and other socioeconomic benefits. This study examined the use of geographic information system (GIS) and remote sensing techniques to gain a quantitative understanding of the spatiotemporal dynamics of LULC. In addition, the major factors behind LULC changes and decline of natural vegetation in the region were analyzed. A post-classification comparison approach was used to detect LULC changes in the study area between 1985 and 2017 using four Landsat images from 1985, 2000, 2010, and 2017. The observed changes were indicative of a decrease in the expanse of the natural Mediterranean forest which lost 9018 ha over 32 years, 39% of its total area, with the highest deforestation rate registered between 2010 and 2017 estimated at 513 ha. year−1. Orchards and rain-fed agriculture lands gained 4095 ha, which matches 55% of initial area, whereas the land under irrigated crops increased by 2266 ha, about 85% of the original area. The area of urban and built-up land in 2017 was more than double in 1985 and achieved the highest urbanization rate between 2010 and 2017 at 203 ha.year−1. Results indicate an unstable trend of bare and low vegetation lands which generally increased by about 50%. From the outcomes of this research, it is strongly recommended that urgent measures be taken to conserve the natural forest and to achieve a rational use of agricultural land in the region of Al-Jabal Al-Akhdar.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
Abdul Kadir ◽  
Zia Ahmed ◽  
Md. Misbah Uddin ◽  
Zhixiao Xie ◽  
Pankaj Kumar

This study aims to assess the impacts of land use and land cover (LULC) changes on the water quality of the Surma river in Bangladesh. For this, seasonal water quality changes were assessed in comparison to the LULC changes recorded from 2010 to 2019. Obtained results from this study indicated that pH, electrical conductivity (EC), and total dissolved solids (TDS) concentrations were higher during the dry season, while dissolved oxygen (DO), 5-day biological oxygen demand (BOD5), temperature, total suspended solids (TSS), and total solids (TS) concentrations also changed with the season. The analysis of LULC changes within 1000-m buffer zones around the sampling stations revealed that agricultural and vegetation classes decreased; while built-up, waterbody and barren lands increased. Correlation analyses showed that BOD5, temperature, EC, TDS, and TSS had a significant relationship (5% level) with LULC types. The regression result indicated that BOD5 was sensitive to changing waterbody (predictors, R2 = 0.645), temperature was sensitive to changing waterbodies and agricultural land (R2 = 0.889); and EC was sensitive to built-up, vegetation, and barren land (R2 = 0.833). Waterbody, built-up, and agricultural LULC were predictors for TDS (R2 = 0.993); and waterbody, built-up, and barren LULC were predictors for TSS (R2 = 0.922). Built-up areas and waterbodies appeared to have the strongest effect on different water quality parameters. Scientific finding from this study will be vital for decision makers in developing more robust land use management plan at the local level.


Author(s):  
H. T. T. Nguyen ◽  
T. A. Pham ◽  
M. T. Doan ◽  
P. T. X. Tran

Abstract. This paper aims to predict the trend of land use land cover (LULC) changes in Dak Nong province over time. Data from Landsat images captured in 2009, 2015, and 2018 was employed to analyze and predict the spatial distributions of LULC categories. The Random Forest (RF) was adopted to classify the images into ten different LULC classes. Besides, integration of Multi-Layer Perceptron Markov Neural Network (MLP-NN) with Markov Chain (MC) was applied to predict the future LULC changes in the region based on the change detection over the previous years. For all classified images, overall accuracy (OA) ranged from 77.35% to 84.55% with kappa (K) coefficient index ranging from 0.75 to 0.8. The results revealed that the annual population growth together with social-economic development was regarded as major drives for land conversion in the area. The predicted map showed a significant decrease trend inthe forest classes by 2025, accounting for 23 thousand ha. However, residential areas, rubber, and agricultural land classes are predicted to rise to 460 ha, 3,000 ha, and 20,000 ha, respectively. The simulated model and calibrated area data may be a vital contribution to sustainable development efforts of the local based on the dynamics of LULC and future LULC change scenarios. Overall, ascertaining the complex interface related to changes in land use and its major drivers over time provides useful information predict to explore the future trend of LULC changes, establish alternative land-use schemes and serve as guidelines for urban planning policymakers.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1105
Author(s):  
Dorcas Idowu ◽  
Wendy Zhou

Incessant flooding is a major hazard in Lagos State, Nigeria, occurring concurrently with increased urbanization and urban expansion rate. Consequently, there is a need for an assessment of Land Use and Land Cover (LULC) changes over time in the context of flood hazard mapping to evaluate the possible causes of flood increment in the State. Four major land cover types (water, wetland, vegetation, and developed) were mapped and analyzed over 35 years in the study area. We introduced a map-matrix-based, post-classification LULC change detection method to estimate multi-year land cover changes between 1986 and 2000, 2000 and 2016, 2016 and 2020, and 1986 and 2020. Seven criteria were identified as potential causative factors responsible for the increasing flood hazards in the study area. Their weights were estimated using a combined (hybrid) Analytical Hierarchy Process (AHP) and Shannon Entropy weighting method. The resulting flood hazard categories were very high, high, moderate, low, and very low hazard levels. Analysis of the LULC change in the context of flood hazard suggests that most changes in LULC result in the conversion of wetland areas into developed areas and unplanned development in very high to moderate flood hazard zones. There was a 69% decrease in wetland and 94% increase in the developed area during the 35 years. While wetland was a primary land cover type in 1986, it became the least land cover type in 2020. These LULC changes could be responsible for the rise in flooding in the State.


Sign in / Sign up

Export Citation Format

Share Document