scholarly journals Optimized Energy Aware Resource Allocation Algorithm Using Software Defined Network Technology

Author(s):  
Ranya Al-Musawi ◽  
Obada Al-Khatib

The number of data centers (DCs) used for storing and processing data has evolved rapidly in recent years. However, the operations held by DCs may relate to a number of disadvantages, primarily presuming in excessive energy and power consumption due to the poor management standards applied. This may lead to a situation in which many devices within the DC operate at full capacity without any tasks assigned for actual execution. A Software Defined Network (SDN) is a network architecture where the control plane is an independent entity from the data plane, yielding to a higher controllability and flexibility over the network. Through the utilization of SDN architecture, a highly functional energy aware network may be established. In this paper, we propose a heuristic algorithm that monitors the current status of an SDN network (in addition to all ingoing and outgoing traffic), in order to dynamically and efficiently allocate network resources by ensuring that only the necessary network devices are active and by turning the idle ones off. The results show that the proposed algorithm reduces energy consumption of the network compared to existing solutions.

2020 ◽  
pp. 68-81
Author(s):  
Oleksandra Yeremenko ◽  
Amal Mersni

The article is devoted to the Network Layer means to ensure resilience during designing an infocommunication system that can counteract faults and failures. A review of the default gateway redundancy protocols concept and analysis of recent developments to overcome fault tolerance challenges in the Software-Defined Networks (SDN) control plane are conducted. In addition, an approach to the use of default gateway redundancy protocols in the existing Software-Defined Network architecture is proposed. Therefore, within the approach, the redundancy of the virtual controller is organized based on the current protocol implemented in traditional IP networks, and the SDN switch interacts with the virtual controller. This mechanism aims to reduce the amount of circulating overhead (control traffic), and the backup controller’s organization increases the control plane’s reliability. Whereas in hybrid and hierarchical SDN networks with border routers, the GLBP mechanism can be applied, which increases the reliability of the controller connected to the data plane. In addition, there are several scenarios where the controller that manages the operation of the SDN data plane may have multiple backup controllers to switch in case of failure, or a controller pool is used to manage each network that makes up the SDN data plane. It also highlights promising future areas for research and development to improve Software-Defined Network resilience, which contributes to the emergence of new solutions. Thus, future research directions are seen in proposing mathematical flow-based models of fault-tolerant interaction of the control plane and the data plane based on redundancy. At the same time, setting the problem in an optimization form with the implementation of load balancing will help to use available network resources effectively.


2022 ◽  
Vol 3 (2) ◽  
pp. 51-55
Author(s):  
Misbachul Munir ◽  
Ipung Ardiansyah ◽  
Joko Dwi Santoso ◽  
Ali Mustopa ◽  
Sri Mulyatun

DDoS attacks are a form of attack carried out by sending packets continuously to machines and even computer networks. This attack will result in a machine or network resources that cannot be accessed or used by users. DDoS attacks usually originate from several machines operated by users or by bots, whereas Dos attacks are carried out by one person or one system. In this study, the term to be used is the term DDoS to represent a DoS or DDoS attack. In the network world, Software Defined Network (SDN) is a promising paradigm. SDN separates the control plane from forwarding plane to improve network programmability and network management. As part of the network, SDN is not spared from DDoS attacks. In this study, we use the naïve Bayes algorithm as a method to detect DDoS attacks on the Software Defined Network network architecture


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Andrea Duggento ◽  
Marco Aiello ◽  
Carlo Cavaliere ◽  
Giuseppe L. Cascella ◽  
Davide Cascella ◽  
...  

Breast cancer is one of the most common cancers in women, with more than 1,300,000 cases and 450,000 deaths each year worldwide. In this context, recent studies showed that early breast cancer detection, along with suitable treatment, could significantly reduce breast cancer death rates in the long term. X-ray mammography is still the instrument of choice in breast cancer screening. In this context, the false-positive and false-negative rates commonly achieved by radiologists are extremely arduous to estimate and control although some authors have estimated figures of up to 20% of total diagnoses or more. The introduction of novel artificial intelligence (AI) technologies applied to the diagnosis and, possibly, prognosis of breast cancer could revolutionize the current status of the management of the breast cancer patient by assisting the radiologist in clinical image interpretation. Lately, a breakthrough in the AI field has been brought about by the introduction of deep learning techniques in general and of convolutional neural networks in particular. Such techniques require no a priori feature space definition from the operator and are able to achieve classification performances which can even surpass human experts. In this paper, we design and validate an ad hoc CNN architecture specialized in breast lesion classification from imaging data only. We explore a total of 260 model architectures in a train-validation-test split in order to propose a model selection criterion which can pose the emphasis on reducing false negatives while still retaining acceptable accuracy. We achieve an area under the receiver operatic characteristics curve of 0.785 (accuracy 71.19%) on the test set, demonstrating how an ad hoc random initialization architecture can and should be fine tuned to a specific problem, especially in biomedical applications.


Author(s):  
Habib Mostafaei ◽  
Davinder Kumar ◽  
Gabriele Lospoto ◽  
Marco Chiesa ◽  
Giueseppe Di Battista

Informatics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Konstantinos Papadakis-Vlachopapadopoulos ◽  
Ioannis Dimolitsas ◽  
Dimitrios Dechouniotis ◽  
Eirini Eleni Tsiropoulou ◽  
Ioanna Roussaki ◽  
...  

With the advent of 5G verticals and the Internet of Things paradigm, Edge Computing has emerged as the most dominant service delivery architecture, placing augmented computing resources in the proximity of end users. The resource orchestration of edge clouds relies on the concept of network slicing, which provides logically isolated computing and network resources. However, though there is significant progress on the automation of the resource orchestration within a single cloud or edge cloud datacenter, the orchestration of multi-domain infrastructure or multi-administrative domain is still an open challenge. Towards exploiting the network service marketplace at its full capacity, while being aligned with ETSI Network Function Virtualization architecture, this article proposes a novel Blockchain-based service orchestrator that leverages the automation capabilities of smart contracts to establish cross-service communication between network slices of different tenants. In particular, we introduce a multi-tier architecture of a Blockchain-based network marketplace, and design the lifecycle of the cross-service orchestration. For the evaluation of the proposed approach, we set up cross-service communication in an edge cloud and we demonstrate that the orchestration overhead is less than other cross-service solutions.


10.7125/40.3 ◽  
2015 ◽  
Vol 40 (0) ◽  
pp. 14
Author(s):  
Nam Manh Tran ◽  
Thanh Huu Nguyen ◽  
Van Hong Nguyen ◽  
Long Bao Kim ◽  
Lam Duc Nguyen ◽  
...  

Author(s):  
Tariq Emad Ali ◽  
Ameer Hussein Morad ◽  
Mohammed A. Abdala

<span>In the last two decades, networks had been changed according to the rapid changing in its requirements.  The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations.  The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs.  Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and forwarding planes. So, due to the rapid increase in the number of applications, websites, storage space, and some of the network resources are being underutilized due to static routing mechanisms. To overcome these limitations, a Software Defined Network based Openflow Data Center network architecture is used to obtain better performance parameters and implementing traffic load balancing function. The load balancing distributes the traffic requests over the connected servers, to diminish network congestions, and reduce underutilization problem of servers. As a result, SDN is developed to afford more effective configuration, enhanced performance, and more flexibility to deal with huge network designs</span>


2010 ◽  
Vol 14 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Dubravka Jelic ◽  
Dusan Gordic ◽  
Milun Babic ◽  
Davor Koncalovic ◽  
Vanja Sustersic

Until recent times, energy management practices primarily consisted in replacing inefficient equipment and then using any number of methods to estimate obtained savings. Experience shows that positive effects of energy efficient improvements were decreased over time. There have been significant efforts over the last decade to define appropriate standards and best practices and implement the consistent energy management system to increase and maintain the energy savings. The knowledge gained from thousands of energy efficient projects is driving a transition from traditional tactical practice (one-time "build and forget" projects) to energy management strategies proposed and endorsed by a number of international organizations. The current status of internationally developed energy management standards, including an analysis of their shared features and differences is presented in this paper. The purpose of the analysis is to describe the current state of ?best practices? for this emerging area of energy efficiency policymaking in order to study the possibility of implementation of energy management standards in Serbia and to estimate the effects and the potential for energy saving that would be made by its implementation.


2019 ◽  
Vol 6 (2) ◽  
pp. 181-192
Author(s):  
Herry Prasetyo Nugroho ◽  
Muhammad Irfan ◽  
Amrul Faruq

Software-Defined Network (SDN) as architecture network that separates the control and forwarding functions, so that network operators and administrators can configure the networks in a simple and centrally between thousands of devices. This study is designed and evaluate the Quality of Services (QoS) performances between the two networks employed SDN-based architecture and without SDN-based. MinNet as a software emulator used as a data plane in the network Software Define Network. In this study, comparison of the value of the QoS on the network based on Software Defined Network and traditional network during the test run from the source node is investigated. Network testing by using traffic loads. Traffic loads are used starting from 20Mbps-100Mbps. The result is verified that the QoS analysis of the Software-Defined Network architecture performed better than conventional network architectures. The value of the latency delay on the Software Define Network range between 0,019-0,084ms, and with 0% packet loss when addressed the network traffics of 10-100Mbps.


Sign in / Sign up

Export Citation Format

Share Document