scholarly journals Comparison of The Expression Levels of PI3K/Akt Pathway Factors in Parkinson’s Disease and Lung Cancer

Experimed ◽  
2018 ◽  
pp. 52-57
Author(s):  
Elif Sanli ◽  
◽  
Nazli Yalcinkaya ◽  
Erdem Tuzun ◽  
◽  
...  
2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


2020 ◽  
Vol 98 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Mehrnaz Mehrabani ◽  
Mohammad Hadi Nematollahi ◽  
Mojde Esmaeili Tarzi ◽  
Kobra Bahrampour Juybari ◽  
Moslem Abolhassani ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disease accompanied by a low expression level of cerebral hypoxia-inducible factor (HIF-1α). Hence, activating the hypoxia-signaling pathway may be a favorable therapeutic approach for curing PD. This study explored the efficacy of hydralazine, a well-known antihypertensive agent, for restoring the impaired HIF-1 signaling in PD, with the aid of 6-hydroxydopamine (6-OHDA)-exposed SH-SY5Y cells. The cytotoxicity of hydralazine and 6-OHDA on the SH-SY5Y cells were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and apoptosis detection assays. The activities of malondialdehyde, nitric oxide (NO), ferric reducing antioxidant power (FRAP), and superoxide dismutase (SOD) were also measured. Expression levels of HIF-1α and its downstream genes at the protein level were assessed by Western blotting. Hydralazine showed no toxic effects on SH-SY5Y cells, at the concentration of ≤50 μmol/L. Hydralazine decreased the levels of apoptosis, malondialdehyde, and NO, and increased the activities of FRAP and SOD in cells exposed to 6-OHDA. Furthermore, hydralazine up-regulated the protein expression levels of HIF-1α, vascular endothelial growth factor, tyrosine hydroxylase, and dopamine transporter in the cells also exposed to 6-OHDA, by comparison with the cells exposed to 6-OHDA alone. In summary, hydralazine priming could attenuate the deleterious effects of 6-OHDA on SH-SY5Y cells by increasing cellular antioxidant capacity, as well as the protein levels of HIF-1α and its downstream target genes.


2017 ◽  
Vol 379 ◽  
pp. 58-63 ◽  
Author(s):  
Elizabeth Ruiz-Sánchez ◽  
Petra Yescas ◽  
Mayela Rodríguez-Violante ◽  
Nancy Martínez-Rodríguez ◽  
Jesica N. Díaz-López ◽  
...  

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Franciele Da Silva ◽  
Michele Rode ◽  
Giovanna Vietta ◽  
Rodrigo Iop ◽  
Tânia Creczynski‑Pasa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document