scholarly journals Development of bio-pesticides from bio-oil of oil palm biomass waste (palm kernel shell) against Metisa plana Walker bagworm (Lepidoptera: Psychidae)

Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 137-143
Author(s):  
N.F. Zulkefli ◽  
W.A. Wan Ab Karim Ghani ◽  
S. Ali ◽  
N. Asib ◽  
Y. Chowmasundaram

Despite the abundance of palm-based residues generated, the by-products from thermochemical processing such as bio-oil may create value-added products to the palm industry. The palm-based derived bio-oil contains high aromatic compounds, which are active ingredients in the bio-pesticides formulation. Therefore, this study investigated the formulation of the bio-pesticide from this bio-oil and determines their effect on insect-pest in oil palm such as Metisa plana walker bagworm. Prior the formulation, preliminary evaluation of the compatibility between bio-oil and surfactants such as Tween 20 and Tween 80 as the bio-pesticides ingredient were evaluated using the ternary phase diagram. The compatibility results showed the best formulation is at 20% of surfactant. Based on these conditions, the experiment was formulated using an active ingredient (AI) called azadirachtin extracted from neem seed. The formulated bio-pesticide was tested for its effectiveness towards the mortality of the bagworm. The results showed that the formulated bio-pesticide was able to repel 50% of the bagworm population, with a lethal concentration (LC50) of 22.1 g/mL showing a good indicator as an effective repellent. Hence, this study provided new knowledge for waste management towards zero waste strategy for a better environment and sustainability.

2016 ◽  
Vol 32 (5) ◽  
Author(s):  
Sabzoi Nizamuddin ◽  
Siddhartha Shrestha ◽  
Saadia Athar ◽  
Brahim Si Ali ◽  
Muhammad Ahmar Siddiqui

AbstractPalm kernel shell (PKS) is one of the greatly abundant residues in the palm oil industry. It possesses physiochemical characteristics that build in it a potential to serve the production of valuable products, namely, bio-fuels such as char, bio-oil, and bio-gas. This paper presents the properties of PKS as a biomass feed for the production of char. Characterizations of PKS in terms of proximate and ultimate analyses, chemical composition, and higher heating value (HHV in terms of MJ/kg) are presented and consequently compared to different oil palm biomass such as empty fruit bunch (EFB), fiber, fronds, and trunks. To illustrate and signify stability, the aforementioned characteristics are discussed for PKS-char, along with further comparison with EFB-char and coal. In addition, recent advances in char production methods from PKS are presented and compared. Simultaneously, future prospects and major challenges towards the utilization of PKS for the production of char are also addressed.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Habeeb Lateef Muttashar ◽  
M. W. Hussin ◽  
Jahanger Mirza ◽  
Ghasan Fahim Huseien

This paper represents the effects of using waste generated from palm oil industries like ash, shell and fibre on the engineering properties of mortar. Palm Oil Fuel Ash (POFA) was used as cement replacement up to 60% and Oil Palm Kernel Shell (OPKS) as sand replacement in mortar mixture. The Oil Palm Fibre was added to increase the strengthening performance of mortar. The method used to find the water binder ratio was by trial and error method with 1:3 ratio of cement to sand. The cubes size of 70mm x 70mm x 70mm, beams size of 40mm x 40mm x 160mm, and cylinders size of 70mm diameter and 150mm height, were cast and tested for compressive strength, flexural strength and splitting tensile strengths of mortar. Samples were cured in water before testing it at 7, 28, and 60 days. Also, the water absorption of mortar was tested at the age of 28 days. The results showed that oil palm fibre provided more advantages and increase the strength properties especially in the flexural and tensile strength. The addition of Oil Palm Kernel Shell reduced the density of mortar and it can be used for lightweight application.  The test results also showed that as the POFA ratio increased, the compressive strength of mortar decreased. However, as OPKS ratio increased, the density was found to be decreased. The mix proportions using 60% POFA and 20% OPKS was considered as the optimum mix design. The mortar showed optimum strength at 9% with the addition of fibre.


Author(s):  
Edmund C. Okoroigwe ◽  
Zhenglong Li ◽  
Godwin Unachukwu ◽  
Thomas Stuecken ◽  
Christopher Saffron

Palm kernel shell is an important by-product of oil palm production. It is often neglected and handled as waste in the product mix of palm oil production. One kilogram of PKS was pyrolized in a bench scale pyrolysis screw reactor at temperature range of 450°C to 500°C in 10mins. The process yielded 61 wt%, 24.5 wt% and 14 wt% bio-oil, bio-char and non condensable flammable gas respectively. Palm Kernel shell is relatively abundant in the tropical West Africa and Asia. Until recently PKS is commonly combusted for cooking purposes which contributes to total GHG emission. The products were characterized by determining their physical and chemical properties using standard methods. The thermochemical conversion shows that there is 29% and 26% increase in the higher heating values and lower heating values (on dry basis) respectively, of the bio-oil obtained when compared with the energy values of the original PKS. Similarly, the HHV of the bio-char is 62% higher than that of the original PKS. In addition the results of the GC-MS analysis of the bio-oil show that it contains useful chemicals that can be harnessed for industrial applications. The ash content of the bio-oil and the original PKS sample are 0.37% and 8.68% respectively, on as received, while the results of the elemental analyses show that there is < 0.08% and < 0.05% sulphur content of the PKS and its bio-oil respectively. This makes the products an environmentally suitable fuels for transportation and power generation. The results of this work show that the products compare well with those of other woody samples used for commercial pyrolysis process. PKS bio-char possesses the potential to be used as industrial absorbent in water treatment and process technology. Hence, PKS can be harnessed as potential future source of bio-energy and Activated carbon, and as such should be given adequate attention as a major product of oil palm processing for sustainable economic development of emerging economies.


2014 ◽  
Vol 625 ◽  
pp. 881-884 ◽  
Author(s):  
Yi Herng Chan ◽  
Suzana Yusup ◽  
Armando T. Quitain ◽  
Yoshimitsu Uemura

Two types of Malaysian oil palm biomass; namely Empty Fruit Bunch (EFB) and Palm Kernel Shell (PKS) are liquefied using sub-and supercritical water to produce bio-oil. Effects of temperatures (360, 390 and 450 °C) and pressures (25, 30 and 35 MPa) of the liquefaction of biomass on the bio-oil yields are investigated. The optimum liquefaction conditions for EFB and PKS using water are at supercritical conditions. PKS which consists of higher lignin content yields maximum bio-oil of about 41.3 wt % at temperature of 450 °C and the bio-oil yield from EFB is about 37.4 wt % at temperature of 390 °C.


2012 ◽  
Vol 91 (10) ◽  
pp. 954-959 ◽  
Author(s):  
Yoshimitsu UEMURA ◽  
Wissam N. OMAR ◽  
Suhair RAZLAN ◽  
Hafizah AFIF ◽  
Suzana YUSUP ◽  
...  

This chapter discusses the utilization of wastes in the form of palm oil fuel ash, oil palm kernel shell, and oil palm fibre in the production of mortar mixes as a part of new and innovative materials in construction industry. Detailed introduction is provided followed by a clear description of each waste and its effect when added to mortar mixes. Furthermore, a research study on the effect of palm oil fuel ash, palm oil kernel shell, palm oil fibre on mortar properties was carried out and the experimental program details are given under four subtitles. Splitting tensile strength and flexural strength were performed to test the engineering properties of mortar containing different types of waste. Results and discussion are provided for additional grasp. It is concluded that the inclusion of high-volume palm oil biomass waste can produce sustainable mortars with high strength and with more durability performance.


2013 ◽  
Vol 701 ◽  
pp. 28-31 ◽  
Author(s):  
Rusila Zamani Abd Rashid ◽  
Hadi Purwanto ◽  
Hamzah Mohd Salleh ◽  
Mohd Hanafi Ani ◽  
Nurul Azhani Yunus ◽  
...  

This paper pertains to the reduction process of local low grade iron ore using palm kernel shell (PKS). It is well known that low grade iron ores contain high amount of gangue minerals and combined water. Biomass waste (aka agro-residues) from the palm oil industry is an attractive alternative fuel to replace coal as the source of energy in mineral processing, including for the treatment and processing of low grade iron ores. Both iron ore and PKS were mixed with minute addition of distilled water and then fabricated with average spherical diameter of 10-12mm. The green composite pellets were subjected to reduction test using an electric tube furnace. The rate of reduction increased as temperature increases up to 900 °C. The Fe content in the original ore increased almost 12% when 40 mass% of PKS was used. The reduction of 60:40 mass ratios of iron ore to PKS composite pellet produced almost 11.97 mass% of solid carbon which was dispersed uniformly on the surface of iron oxide. The aim of this work is to study carbon deposition of PKS in iron ore through reduction process. Utilization of carbon deposited in low grade iron ore is an interesting method for iron making process as this solid carbon can act as energy source in the reduction process.


2020 ◽  
Vol 31 ◽  
pp. 221-227 ◽  
Author(s):  
Eva Leones Dominguez ◽  
Arasu Uttran ◽  
Soh Kheang Loh ◽  
Marie-Hélène Manero ◽  
Richard Upperton ◽  
...  

2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alias ◽  
Humapar Azhar Rahimi ◽  
Suriatie Binti Mat Yusuf

Distillation is an essential thermo chemical process; it mainly depends on temperature which affects mostly the product yield and composition. The aim of this research is to investigate the effect of temperature on the characterization of bio-oil liquid fraction derived from palm kernel shell (PKS) bio-oil. The temperatures were 100 °C and 140°C. The higher heating value (HHV) obtained were 28.6MJ/Kg and 31.5MJ/Kg for bio-oil fraction 100°C and 140°C respectively. The GC- MS analysis determined that phenol is the dominant product in bio-oil fractions.


Sign in / Sign up

Export Citation Format

Share Document