Influence of the infeed method on tool life and surface finish in austenitic stainless steel thread machining

Author(s):  
CARLOS EDUARDO COSTA ◽  
Milton Polli
Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

In February/March 2007, The NRC issued Regulatory Guide “RG1.207” and Argonne National Laboratory issued NUREG/CR-6909 that is now applicable in the US for evaluations of PWR environmental effects in fatigue analyses of new reactor components. In order to assess the conservativeness of the application of this NUREG report, Low Cycle Fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in air environment a fatigue behavior consistent with the ANL reference “air” mean curve, as published in NUREG/CR-6909. LCF tests in a PWR environment were performed at various strain amplitude levels (± 0.6% or ± 0.3%) for two loading conditions corresponding to a simple or to a complex strain rate history. The simple loading condition is a fully reverse triangle signal (for comparison purposes with tests performed by other laboratories with the same loading conditions) and the complex signal simulates the strain variation for an actual typical PWR thermal transient. In addition, two various surface finish conditions were tested: polished and ground. This paper presents the comparisons of penalty factors, as observed experimentally, with penalty factors evaluated using ANL formulations (considering the strain integral method for complex loading), and on the other, the comparison of the actual fatigue life of the specimen with the fatigue life predicted through the NUREG report application. For the two strain amplitudes of ± 0.6% and ± 0.3%, LCF tests results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates give “Fen” penalty factors close to those estimated using the ANL formulation (NUREG/6909). However, for the lower strain amplitude level and a triangle loading signal, the ANL formulation is pessimistic compared to the AREVA NP test results obtained for polished specimens. Finally, it was observed that constant amplitude LCF test results obtained on ground specimens under complex loading simulating an actual sequence of a cold and hot thermal shock exhibits lower combined environmental and surface finish effects when compared to the penalty factors estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins, whereas the current ASME approach seems sufficient to cover significant environmental effects for representative loadings and surface finish conditions of reactor components.


Author(s):  
Yuichi Fukuta ◽  
Yuichiro Nomura ◽  
Seiji Asada

NUREG/CR-6909 of USA and JSME of Japan proposed new rules for evaluating environmental effects in fatigue analyses of reactors components. These rules were established from a lot of fatigue data with polished specimens under simple loading condition. The effects of surface finish or complex loading condition were reported in some papers, but these data were obtained with the simple shaped specimens. In order to evaluate the effects of surface finish and loading condition and to confirm the applicability of the proposed rules to actual components, Low Cycle Fatigue tests are performed in PWR environment with the specimens cut from 316 austenitic stainless steel welded piping. The pipes are machined to have three levels of surface finish condition and the load pattern simulating the thermal stress is applied to specimens. In this study, the effect of surface finish on fatigue life is included to be small for 316 austenitic stainless steel welded piping. Considering the insensitive region in the current evaluation rule, predicted accuracy is increased and possibility of improving the current rule is indicated.


2012 ◽  
Vol 723 ◽  
pp. 247-251
Author(s):  
Hai Dong Yang ◽  
Zhi Ding

Austenitic stainless steel has poor cutting performance, especially when the inappropriate choice of tool materials and cutting parameters, cutting tool life will be shortened and the quality of machined surface is poor. In this paper, 0Cr18Ni9 stainless steel dry cutting tests had been done with nano-TiAlN coated carbide blade YGB202, the relationship between tool life and cutting speed, tool wear mechanism had been analyzed. In order to improve the processing efficiency and tool life, process parameters were optimized.


2010 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Zhi Rong Huang

In this paper, objective function for the highest productivity and longer life of the twist drill is built. Though using Materlab software to draw the curves of the changes of feed, spindle speed, tool life and productivity, a way to find the better cutting parameters of machining the small diameter deep hole on the SUS316 austenitic stainless steel with the twist drill is introduced. The better cutting parameters are obtained.


2006 ◽  
Vol 315-316 ◽  
pp. 195-199 ◽  
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Lu Lu Jing ◽  
Z.G. Hu ◽  
X.F. Zhu ◽  
...  

Austenitic stainless steel is a kind of difficult-to-cut material widely utilized in various industry fields. But cutting tools is the uppermost obstacle in the application of high efficient and precise machining of austenitic stainless steel. Drill is the one of the most complicated universal cutting tools, whose geometry structure influences greatly on drilling performance. So the development of special drills is imperative for high-efficient drilling. This paper presented the optimal geometrical characteristics of the special drills, with138° point angle and 38° helix angle, for high-efficient drilling austenitic stainless steel. The drilling performance has been evaluated completely and comprehensively through the experiments including measuring cutting deformation coefficient, thrust force, torque, cutting temperature near the cutting point, cutting tool life, drill wear mechanism and so on. The special drill indicated appreciated cutting performance during drilling austenitic stainless steel with high efficiency. Compared to the commercial available standard drill with 118° point angle and 32° helix angle, the cutting tool life of the special drill was 1.6 times of the standard drill and the special drill yielded good performance of chip evacuation, good wear resistance and great drilling quality.


1961 ◽  
Vol 83 (4) ◽  
pp. 572-578 ◽  
Author(s):  
H. Takeyama

The austenitic 18-8 stainless steel is one of the most troublesome materials to be machined because of the tendencies of work-hardening, high temperature, and adhesion. The ultimate object of the experiment is to establish the machining standard of the austenitic stainless steel with carbide tools based upon tool life. Generally speaking, tool life in a modern machining practice should be specified not only by the flank wear, but by the crater. This paper describes the process of obtaining the optimum cutting conditions for turning the stainless steel from the viewpoint of tool life, and discusses how the tool life is governed by flank wear and crater depending upon the cutting conditions.


Sign in / Sign up

Export Citation Format

Share Document