The Optimization of Cutting Parameter of Machining the Small Diameter Deep Hole on Austenitic Stainless Steel

2010 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Zhi Rong Huang

In this paper, objective function for the highest productivity and longer life of the twist drill is built. Though using Materlab software to draw the curves of the changes of feed, spindle speed, tool life and productivity, a way to find the better cutting parameters of machining the small diameter deep hole on the SUS316 austenitic stainless steel with the twist drill is introduced. The better cutting parameters are obtained.

2012 ◽  
Vol 723 ◽  
pp. 247-251
Author(s):  
Hai Dong Yang ◽  
Zhi Ding

Austenitic stainless steel has poor cutting performance, especially when the inappropriate choice of tool materials and cutting parameters, cutting tool life will be shortened and the quality of machined surface is poor. In this paper, 0Cr18Ni9 stainless steel dry cutting tests had been done with nano-TiAlN coated carbide blade YGB202, the relationship between tool life and cutting speed, tool wear mechanism had been analyzed. In order to improve the processing efficiency and tool life, process parameters were optimized.


2012 ◽  
Vol 433-440 ◽  
pp. 552-557 ◽  
Author(s):  
Gerhard Petuelli ◽  
Christoph Nentwig

In this paper results of manufacturing tests are described done in order to evaluate the performances of twist drills of diameter d = 1.2 mm and 1.4 mm respectively, if boring into stainless steel X90CrMoV18 (1.4112). Deep-hole drilling was realized thus, that the depth of the bore hole was greater than 10 times the diameter of the twist drill (L/d >10). In order to reduce the impact on the environment caused by the coolant, it was found that minimum quantity lubrication (MQL) can be applied. Hence, the ecology of the mass production of perforated discs for the food processing industry can be improved. The performance of the several small diameter twist drills was determined and evaluated by, firstly, their deep-hole drilling capability, e.g. assessed by the variation or even increase of cutting forces with increasing depth and travel, whether the forces exceed a critical level due to poor chip extraction. In addition, the suitability to use or rather implement the different small diameter twist drills for high-speed cutting (HSC) and finally the individual tool service life for each investigated twist drill. This research project has shown that the accomplishable performance and operating time are strongly dependent on tool cutting material and the tool geometry, especially the size of the chip flutes of a twist drill, as well as the individual coating of the cutting tools.


2018 ◽  
Vol 14 (3) ◽  
pp. 112-122
Author(s):  
Ahmed A. Akbar ◽  
Raed R. Shwaish ◽  
Naba D. Hadi

This paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the  maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results  was achieved. Tool life was decreased when spindle speed and feed were increased.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987089 ◽  
Author(s):  
Yingshuai Xu ◽  
Zhihui Wan ◽  
Ping Zou ◽  
Qinjian Zhang

There are many problems and physical phenomena in turning process, like machined surface quality, cutting force, tool wear, and so on. These factors and the chip shape of workpiece materials, which is an important aspect to study the mechanism of ultrasonic vibration–assisted turning, go hand in hand. This article first introduces the types and changes of chip, meanwhile the chip formation mechanism of ultrasonic vibration–assisted turning is studied and analyzed, and the turning experiments of 304 austenitic stainless steel with and without ultrasonic vibration are carried out. The difference of chip morphology between ultrasonic vibration–assisted turning and conventional turning is contrasted and analyzed from the macroscopic and microscopic point of view. The influence of process parameters on chip shape and the impact of chip shape on machining effect are also analyzed. Results indicate that when process parameters (vibration frequency, ultrasonic amplitude, and cutting parameters) are suitably selected, ultrasonic vibration–assisted turning can gain access to better chip shape and chip breaking effect than conventional turning. By contrast with conventional turning, phenomenon of serrated burr on the chip edge and the surface defects of chip in ultrasonic vibration–assisted turning have improved significantly. Moreover, it is found that superior chip morphology in ultrasonic vibration–assisted turning can be acquired under the circumstance of comparatively small cutting parameters (cutting speed, depth of cut, and feed rate); at the same time, preferable chips can also obtain ranking machining effect.


Author(s):  
Yingshuai Xu ◽  
Zhihui Wan ◽  
Ping Zou ◽  
Weili Huang ◽  
Guoqing Zhang

The generation mechanism of cutting force in ultrasonic vibration assisted turning (UAT), with the composition and decomposition of cutting force is discussed in this paper, and the model of cutting force in UAT is established based on the mechanism of UAT. The force measuring test system is designed on the basis of the established machining system of UAT. The contrast experiments for turning the workpiece of 304 austenitic stainless steel are conducted with and without ultrasonic vibration under different technological parameters. Furthermore, the relational model and correlation between technological parameters and cutting force is obtained by regression analysis and variance analysis. Thereby, the mutual relation among these technological parameters is effectively controlled, which contributes to achieving the high quality and high efficient processing. Simultaneously, the influences of single technological parameter with the interaction between technological parameters on cutting force are researched and analyzed. The results prove that the cutting force is reduced significantly with the aid of ultrasonic vibration in turning and the choice of the proper ultrasonic amplitude, there is an optimal range of ultrasonic amplitudes as well. Meanwhile, the cutting parameters have great influence on cutting force, among which depth of cut has the superior influence, then the cutting speed, and feed rate has the minimal influence. Moreover, cutting parameters should not be too large, UAT is mainly used for semi-finishing or finishing at medium-low speed. UAT will get more ideal machining effect if cutting parameters are chosen properly.


2010 ◽  
Vol 455 ◽  
pp. 548-552
Author(s):  
J.S. Zhou ◽  
Bang Yan Ye ◽  
Xing Yu Lai

This research aims to improve the method of Mini-pore Drilling superimposed an axis vibration for hard-to-cut material of Austenitic Stainless Steel 1Cr18Ni9Ti, as well as to make it easier for the chips to be discharged. A mathematical model of vibration drilling is presented, and the relationship between the vibration parameters and cutting parameters to generate little and short broken-chips in vibration drilling is investigated, analyzed and verified by experiments. The results show that when the processing parameters meet the conditions given in this article, stable and reliable chip-breaking can be achieved. The results provide a theoretical guidance to achieve chip-breaking in mini-pore vibration drilling for hard-to-cut material.


1979 ◽  
Vol 101 (2) ◽  
pp. 281-290 ◽  
Author(s):  
V. Latinovic ◽  
R. Blakely ◽  
M. O. M. Osman

The design procedure of optimal multi-edge BTA deep-hole machining tools with unsymmetrically located cutters and preliminary test evidence are presented. Based on a mathematical model of cutting forces in terms of fundamental cutting parameters of the tool, a multivariable, nonlinear objective function was derived and modified to an unconstrained type with bounded decision variables. A numerical, direct search method, accelerated in distance, was selected to minimize the objective function. This procedure insures, on one hand, a predetermined cutting force resultant necessary for tool guidance; on the other hand, it minimizes the variation of cutting edge pressure. A relatively fast computer routine was adapted to provide the optimal tool parameters, which then were used to design cutting head prototypes. Two trepanning heads of three and two cutters were manufactured and tested at production facilities. The test results showed that the cutting force resultant was well predicted in both heads and that they were well guided. Much higher feed rates were possible compared to those achieved with single-edge tools without any loss of hole accuracy straightness or surface finish.


2012 ◽  
Vol 565 ◽  
pp. 376-381 ◽  
Author(s):  
Yoshiyuki Masuta ◽  
Koichi Okuda ◽  
Hiroo Shizuka ◽  
Masayuki Nunobiki

This paper describes an influence of the cutting condition on the tool performance and the hole shape accuracy in a deep-hole machining of stainless steel with small-diameter drill. The drilling tests were carried out by changing the feed, tool diameter and drill length in order to investigate the appropriate cutting conditions for drilling the holes with deep depth. The results indicate that the increase of the thrust force leads to the buckling of the drill and the work hardening of the workpiece causes the tool failure.


Sign in / Sign up

Export Citation Format

Share Document