Electrodeposition of CuZn from alkaline solution containing micrometric SiC particles in a flow-cell for composite coatings.

Author(s):  
Paulo Cezar Tulio ◽  
Maria Isabel da Silva
2020 ◽  
pp. 179-181
Author(s):  
A.A. Abrashov A.A. ◽  
E.G. Vinokurov ◽  
M.A. Egupova ◽  
V.D. Skopintsev

The technological (deposition rate, coating composition) and functional (surface roughness, microhardness) characteristics of chemical composite coatings Ni—Cu—P—Cr2O3 obtained from weakly acidic and slightly alkaline solutions are compared. It is shown that coatings deposited from slightly alkaline solution contain slightly less phosphorus and chromium oxide than coatings deposited from weakly acid solution (2...3 % wt. phosphorus and up to 3.4 % wt. chromium oxide), formed at higher rate (24...25 microns per 1 hour of deposition at temperature of 80 °C), are characte rized by lower roughness and increased microhardness. The Vickers microhardness at 0.05 N load of composite coatings obtained from slightly alkaline solution and heat-treated at 400 °C for 1 hour is 13.5...15.2 GPa, which is higher than values for coatings deposited made of weakly acidic solution. The maximum microhardness of coatings is achieved at concentration 20 g/l of Cr2O3 particles. The technology of chemical deposition of Ni—Cu—P—Cr2O3 coatings formed in slightly alkaline solution is promising for obtaining of materials with increased hardness and wear resistance.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Donya Ahmadkhaniha ◽  
Lucia Lattanzi ◽  
Fabio Bonora ◽  
Annalisa Fortini ◽  
Mattia Merlin ◽  
...  

The purpose of the study is to assess the influence of SiC particles and heat treatment on the wear behaviour of Ni–P coatings when in contact with a 100Cr6 steel. Addition of reinforcing particles and heat treatment are two common methods to increase Ni–P hardness. Ball-on-disc wear tests coupled with SEM investigations were used to compare as-plated and heat-treated coatings, both pure and composite ones, and to evaluate the wear mechanisms. In the as-plated coatings, the presence of SiC particles determined higher friction coefficient and wear rate than the pure Ni–P coatings, despite the limited increase in hardness, of about 15%. The effect of SiC particles was shown in combination with heat treatment. The maximum hardness in pure Ni–P coating was achieved by heating at 400 °C for 1 h while for composite coatings heating for 2 h at 360 °C was sufficient to obtain the maximum hardness. The difference between the friction coefficient of composite and pure coatings was disclosed by heating at 300 °C for 2 h. In other cases, the coefficient of friction (COF) stabilised at similar values. The wear mechanisms involved were mainly abrasion and tribo-oxidation, with the formation of lubricant Fe oxides produced at the counterpart.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850074
Author(s):  
YAN SHEN ◽  
PRASANTA K. SAHOO ◽  
YIPENG PAN

In order to enhance the corrosion resistance of mooring chain, the composite coatings are carried out on the surface of 22MnCrNiMo steel for mooring chain by double-pulsed electrodeposition technology using centrifugal force in the rotating device. The microstructure and anti-corrosion performance of the composite coatings have been investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and corrosion resistance of composite coatings in the presence of nano-SiC. The results show that the presence of nano-SiC has a significant effect on the preparation of composite coating during the process. The surface of the coating becomes compact and smooth at a moderate concentration of nano-SiC particles. Furthermore, the best corrosion resistance of the composite coatings can be obtained when the concentration of nano-SiC particles is 2.0[Formula: see text]g.L[Formula: see text] after salt spray treatment.


2012 ◽  
Vol 457-458 ◽  
pp. 146-149
Author(s):  
Yan Hai Cheng ◽  
Shi Ju Zhang ◽  
Yu Xing Peng ◽  
Fang Fang Xing ◽  
Jie Li ◽  
...  

In this study, Ni-P-SiC composite coatings were prepared by adding different amount of SiC particles into electroless Ni-P plating solution. The effects of SiC particles concentration in solution on depositing rate and composition of the coatings were investigated. The different SiC contents in coatings could be obtained by adjusting the amount of SiC particle concentration in electroless plating solution. Scanning electron microscopy (SEM) results indicate that SiC particles are dispersed in the composite coating and Ni-P alloy is mainly as a bond metal envelope with SiC particles. At the same time, the microhardness became increased and the wear resistance improved with the increasing of SiC content.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44933-44942 ◽  
Author(s):  
Ruiqian Li ◽  
Qingwei Chu ◽  
Jun Liang

The micro or nano-sized SiC particles have significant effects on nucleation/growth process, morphology, microhardness and trilogical performance of Ni coatings.


2013 ◽  
Vol 78 (4) ◽  
pp. 549-554 ◽  
Author(s):  
Uros Lacnjevac

Composite Ni-MoO2 coatings were prepared and characterized with respect to their possible application as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. The composites were electrodeposited onto Ni meshes from an ammonium chloride Ni solution with suspended MoO2 particles in simulated industrial conditions for production of commercial cathodes. The influence of the concentration of MoO2 particles in the solution and deposition current density on the morphology, chemical and phase composition of obtained coatings was investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Catalytic activity for the HER of the coatings was examined by polarization measurements in a 32 wt. % NaOH solution at 90?C and compared to the activity of the commercial De Nora?s cathode (DN). It was shown that the most active Ni-MoO2 coating exhibits better polarization characteristics for the HER than the DN cathode. The mechanism of the HER on the specified Ni-MoO2 coating was investigated in 8 mol dm-3 NaOH at 30?C by means of steady-state polarization measurements and an electrochemical impedance spectroscopy (EIS) method. Based on the theoretical interpretation of the experimental data, rate constants of the three individual steps of the HER were determined and the source of catalytic activity of the coating was elucidated.


2022 ◽  
Vol 29 (1) ◽  
pp. 153-160
Author(s):  
Bowei Zhang ◽  
Qiao Zhang ◽  
Zhan Zhang ◽  
Kui Xiao ◽  
Qiong Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document