scholarly journals Improving management of invasive species: New Zealand’s approach to pre- and post-border pests

2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Brenton-Rule ◽  
Susy Frankel ◽  
Phil Lester

Biological invasions are a ubiquitous global concern. Invasive species are non-native species that arrive in a new area, establish and increase in density and distribution to the detriment of the recipient environment. Such species that become invasive are a major threat to biodiversity (Vitousek and D’Antonio, 1997). Unlike inanimate risks, living things establish, reproduce and often spread, leading to enormous environmental and economic effects (Vilà et al., 2010). 

Author(s):  
Maria Balazova ◽  
Dana Blahutova ◽  
Terezia Valaskova

Biological invasions are recognised as a potentially major threat to biodiversity and may have considerable economic and social effects. Public, including pupils, attitudes may have large implications for invasive species management in terms of prevention, early warning and eradication success, but significant is the relations between the lay public’s visions of nature, their knowledge about non-native species and their perceptions of invasive species management. The more direct experience people have with the impact of invasive species, the more likely they will be able to understand the potential benefits of management programmes. The aim of our work was to prepare educational materials about invasive organisms for elementary schools. Some of them were subsequently applied directly in practice as part of an excursion in a schoolyard in west Slovakia, where up to six species of invasive plants were identified in the close proximity to the school. Keywords: Biological invasions, prevention, education, excursion.


Author(s):  
Amy Krist ◽  
Mark Dybdahl

Invasive species are one of the greatest threats to global biodiversity. Hence, understanding the role of invasive species is of grave importance to managing and minimizing the impact of biological invasions. To date, the ecological impacts of biological invasions have received significant attention, but little effort has been made to address the evolutionary impact (Sakai et al. 2001, Cox 2004). This is despite the fact that evolutionary impacts are likely to be widespread; invasive species have been shown to alter patterns of natural selection or gene flow within native populations (Parker et al. 1999), and many of the best examples of rapid evolution involve invasive species interacting with native species (Reznick and Ghalambor 2001, Strauss et al. 2006). We have begun to address some of the evolutionary consequences of the invasion of the New Zealand mud snail, (Potamopyrgus antipodarum) on a species of native snail in the Greater Yellowstone Area (GYA).


Author(s):  
Lohengrin A. Cavieres ◽  
◽  

Biological invasions are one the most important drivers of the current environmental changes generating important biodiversity losses. Although several hypotheses have been proposed to understand the mechanisms underpinning biological invasions, most of them relate to negative interactions among native and invasive species, where the capacity for many invasive species to reduce diversity is often attributed to a greater competitiveness. However, neighbouring species can also show facilitative interactions, where the presence of one species can facilitate another directly by improving environmental conditions or indirectly through negative effects on a third party species. This chapter reviews the scientific literature on plant invasion, seeking examples of where facilitative interactions either among native and non-native plant species or among non-native species were demonstrated. There are several examples of native species that directly facilitate a non-native species, while examples of native species having a negative effect either on a native or a non-native species that compete with a target non-native, generating a net indirect facilitative effect of the native on the target non-native, are less numerous. Direct facilitation among non-native species has been reported as part of the 'invasional meltdown' phenomenon (Chapter 8, this volume). There are cases where non-native species can have a negative effect on a native species that competes with a target non-native, generating a net indirect facilitative effect among the non-natives. Finally, a non-native species can have a direct facilitative effect on native species, which might have important implications in restoration.


2011 ◽  
Vol 57 (5) ◽  
pp. 613-624 ◽  
Author(s):  
Judith S. Weis

Abstract This article reviews biological invasions in which predation (or its absence) plays a major role in the success of the invader. Examples are described in which the invader out-competes native species for the same food, and cases in which the invader consumes valued native species. In many instances, better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check. A relatively new management approach in the US is the idea of adding another trophic level – to have humans act as the predators and consume the invasive species. This approach is being utilized in Florida and throughout the Caribbean against the lionfish, but could be extended to other fishes, as well as to various invasive crustaceans and mollusks. This idea is controversial, and current regulations prohibiting the possession of individuals of the invasive species (e.g., mitten crabs or snakefish) would preclude the development of a fishery for them.


Zootaxa ◽  
2020 ◽  
Vol 4852 (1) ◽  
pp. 145-150
Author(s):  
AKILA ABESINGHE ◽  
HIRANYA SUDASINGHE ◽  
ANJALIE AMARASINGHE ◽  
FAZLA FAREED ◽  
THARANI SENAVIRATHNA ◽  
...  

Invasive alien species (IAS) are a major threat to biodiversity and have contributed to population declines in native species worldwide (Vilà et al. 2011; Gurevitch & Padilla 2004). IUCN’s Invasive Species Specialist Group lists some 80 invasive or potentially invasive species in Sri Lanka, which is part of a global biodiversity hotspot (Myers et al. 2000; Marambe et al. 2011). The major release of aquatic IAS on the island are routed through the ornamental-fish industry (Marambe et al. 2011; Sudasinghe 2016), though a minority represents deliberate, if unplanned, introductions by governmental and non-governmental agencies (Marambe et al. 2011). 


NeoBiota ◽  
2020 ◽  
Vol 54 ◽  
pp. 49-69 ◽  
Author(s):  
Rodrigue C. Gbedomon ◽  
Valère K. Salako ◽  
Martin A. Schlaepfer

Conservation scientists have traditionally viewed non-native species (NNS) as potential threats to native biodiversity. Here, we question whether alternative views of NNS exist in the scientific community that stand in contrast to the dominant narrative that emerges from the literature. We asked researchers from the biological, social, and environmental sciences to participate in an anonymous poll regarding the perceived values and threats of NNS. Some 314 individuals responded, approximately half of whom were biologists and half were social or environmental scientists. We grouped responses into three statistical clusters defined by shared responses. We then analyzed the correlation of responses to individual questions and membership of clusters with predictor variables age, gender, and field of work. Overall, a majority of respondents in our sample supported statements that the species-component of biodiversity should include all species (55%) or some types of non-native species (an additional 32%), which contrasts with the manner in which major biodiversity assessments and indicators are constructed. A majority of respondents in our sample (65%) also supported that measurement of the impact of invasive species should be based on the net biological, social, and economic effects, which also represents a marked departure from current methods that focus only on the adverse effects of a subset of NNS considered as invasive. Field of work and age were correlated with clusters and numerous individual responses. For example, biologists were three-times more likely than non-biologists to support a definition of species richness that included only native species. Two clusters (Cluster 1 and Cluster 3), mainly composed of non-biologists and biologists, respectively, differed in their support for statements that NNS would provide useful ecosystem services in the future (66% and 40%, respectively). Thus, a key result of this study is that a variety of normative stances regarding NNS is present within the scientific community. Current international indicators of progress (e.g., Aichi Targets) capture only a “nativist” set of values, which, if our sample is representative of the scientific community, appears to be a minority view. Therefore, we argue that indicators should be modified to integrate the diversity of views that exist within the scientific community.


Author(s):  
Lohengrin A. Cavieres

Abstract Biological invasions are one the most important drivers of the current environmental changes generating important biodiversity losses. Although several hypotheses have been proposed to understand the mechanisms underpinning biological invasions, most of them relate to negative interactions among native and invasive species, where the capacity for many invasive species to reduce diversity is often attributed to a greater competitiveness. However, neighbouring species can also show facilitative interactions, where the presence of one species can facilitate another directly by improving environmental conditions or indirectly through negative effects on a third party species. This chapter reviews the scientific literature on plant invasion, seeking examples of where facilitative interactions either among native and non-native plant species or among non-native species were demonstrated. There are several examples of native species that directly facilitate a non-native species, while examples of native species having a negative effect either on a native or a non-native species that compete with a target non-native, generating a net indirect facilitative effect of the native on the target non-native, are less numerous. Direct facilitation among non-native species has been reported as part of the 'invasional meltdown' phenomenon (Chapter 8, this volume). There are cases where non-native species can have a negative effect on a native species that competes with a target non-native, generating a net indirect facilitative effect among the non-natives. Finally, a non-native species can have a direct facilitative effect on native species, which might have important implications in restoration.


Author(s):  
Lohegrin A. Cavieres ◽  
◽  

Biological invasions are one the most important drivers of the current environmental changes generating important biodiversity losses. Although several hypotheses have been proposed to understand the mechanisms underpinning biological invasions, most of them relate to negative interactions among native and invasive species, where the capacity for many invasive species to reduce diversity is often attributed to a greater competitiveness. However, neighbouring species can also show facilitative interactions, where the presence of one species can facilitate another directly by improving environmental conditions or indirectly through negative effects on a third party species. This chapter reviews the scientific literature on plant invasion, seeking examples of where facilitative interactions either among native and non-native plant species or among non-native species were demonstrated. There are several examples of native species that directly facilitate a non-native species, while examples of native species having a negative effect either on a native or a non-native species that compete with a target non-native, generating a net indirect facilitative effect of the native on the target non-native, are less numerous. Direct facilitation among non-native species has been reported as part of the 'invasional meltdown' phenomenon (Chapter 8, this volume). There are cases where non-native species can have a negative effect on a native species that competes with a target non-native, generating a net indirect facilitative effect among the non-natives. Finally, a non-native species can have a direct facilitative effect on native species, which might have important implications in restoration.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


Sign in / Sign up

Export Citation Format

Share Document