scholarly journals Traditional Javanese Residential Architecture Designs and Thermal Comfort. A Study Using a Computational Fluid Dynamics Program to Explore, Analyse, and Learn from the Traditional Designs for Thermal Comfort

2021 ◽  
Author(s):  
◽  
Prasasto Satwiko

<p>This thesis grows out of a desire to understand, in building science terms, the environmental features of traditional building design practices on Yogyakarta Special Region (Indonesia). The construction of traditional dwellings conforms to a set of rules, determining both the form and process of construction. The thesis describes tests of a number of factors related to traditional Javanese buildings for their effect on thermal comfort and air flow, isolating those design aspects and analysing them through contemporary techniques. Having proposed a scientific rationale behind traditional customs, two building styles, Joglo and Limasan are analysed. These styles are shown to relate to traditional numerological systems (petungan; i.e. sri and kitri), which have governed the specific details of domestic construction, and to the scale and siting of structures within the designated traditional guidelines. For comparison, simple hip-roofed dwelling (not applying Javanese style, petungan, and materials), representing current practices, were modelled. A commercial Computational Fluid Dynamics program was used as the principal research tool, testing thermal comfort through computer simulation. The main conclusion reached by this thesis is that traditionally designed Javanese architecture is thermally comfortable in a hot humid climate, more so than the simple hip-roofed dwelling. Literature studies reveal that modern building science ideas on thermal comfort in hot humid climates had been applied instinctively in traditional Javanese architecture. Computer simulation confirms them as thermally comfortable. Differences in style, petungan values, and scale were found to affect thermal comfort slightly, through their effects on the aerodynamic and thermal performance of the buildings. On the other hand, factors relating to materials have a significant effect on thermal comfort. The high porosity of traditional clay tile roof systems has provided Javanese buildings with a continuous ventilated roof, which is superior to corrugated steel from the point of view of ventilation of the dwellings. In addition, CFD modelling has proved to be a valid means of testing airflow within and around buildings. However, calibration is needed to ensure the CFD program performs accurately and reliably. Simplification of data input is also recommended to minimise complication in the simulation without necessarily sacrificing the accuracy of the results. Further applications and current limitations of CFD technology are discussed.</p>

2021 ◽  
Author(s):  
◽  
Prasasto Satwiko

<p>This thesis grows out of a desire to understand, in building science terms, the environmental features of traditional building design practices on Yogyakarta Special Region (Indonesia). The construction of traditional dwellings conforms to a set of rules, determining both the form and process of construction. The thesis describes tests of a number of factors related to traditional Javanese buildings for their effect on thermal comfort and air flow, isolating those design aspects and analysing them through contemporary techniques. Having proposed a scientific rationale behind traditional customs, two building styles, Joglo and Limasan are analysed. These styles are shown to relate to traditional numerological systems (petungan; i.e. sri and kitri), which have governed the specific details of domestic construction, and to the scale and siting of structures within the designated traditional guidelines. For comparison, simple hip-roofed dwelling (not applying Javanese style, petungan, and materials), representing current practices, were modelled. A commercial Computational Fluid Dynamics program was used as the principal research tool, testing thermal comfort through computer simulation. The main conclusion reached by this thesis is that traditionally designed Javanese architecture is thermally comfortable in a hot humid climate, more so than the simple hip-roofed dwelling. Literature studies reveal that modern building science ideas on thermal comfort in hot humid climates had been applied instinctively in traditional Javanese architecture. Computer simulation confirms them as thermally comfortable. Differences in style, petungan values, and scale were found to affect thermal comfort slightly, through their effects on the aerodynamic and thermal performance of the buildings. On the other hand, factors relating to materials have a significant effect on thermal comfort. The high porosity of traditional clay tile roof systems has provided Javanese buildings with a continuous ventilated roof, which is superior to corrugated steel from the point of view of ventilation of the dwellings. In addition, CFD modelling has proved to be a valid means of testing airflow within and around buildings. However, calibration is needed to ensure the CFD program performs accurately and reliably. Simplification of data input is also recommended to minimise complication in the simulation without necessarily sacrificing the accuracy of the results. Further applications and current limitations of CFD technology are discussed.</p>


2019 ◽  
Vol 41 (4) ◽  
pp. 466-479
Author(s):  
S Subhashini ◽  
K Thirumaran

This paper attempts to investigate the potential of courtyards in optimizing natural ventilation and improving comfort levels in the learning spaces of a naturally ventilated educational institution with courtyards in the warm-humid climatic region of Madurai. Field measurements and experimental studies were carried out to predict the indoor and outdoor environmental conditions. The numerical study was carried out using computational fluid dynamics-based simulations using Ansys Fluent as the solver. The main aim of the simulation is to understand the airflow pattern and air velocity fields inside the classrooms surrounding the courtyards for different wind directions. The computational fluid dynamics results were validated by comparing it with the experimental results obtained in the current study and numerical results from other studies. The major findings of the current study suggest that courtyards with an aspect ratio of 1:2, orientations of openings at an angle of 0–20° to the predominant wind directions and the overall percentage of openings between 15 and 30% in buildings in Madurai region can enhance natural ventilation and thus improve thermal comfort of the occupants. Practical application: Naturally ventilated buildings in warm-humid climates have difficulty in providing thermal comfort to the occupants. CFD tools have been used to predict the ventilation performance of a naturally ventilated educational building with courtyards. The CFD results were helpful in identifying the implication of building design on the indoor air flow pattern. The recommendations given in this paper are applicable to any building type which relies on natural ventilation for thermal comfort provided they have similar building configurations, boundary conditions and weather conditions. The study is intended to help architects and building designers in the effective design of naturally ventilated buildings with respect to its climatic conditions.


2008 ◽  
Vol 1097 ◽  
Author(s):  
Helen Jane Griffiths ◽  
John G Harvey ◽  
James Dean ◽  
James A Curran ◽  
Athina E Markaki ◽  
...  

AbstractCell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated.


2009 ◽  
Vol 62 (3) ◽  
pp. 477-491 ◽  
Author(s):  
D. C. Lo ◽  
Dong-Taur Su ◽  
Jan-Ming Chen

It is well known that vessels operating in the vicinity of a lateral bank experience a significant yaw moment and sway force. This bank effect has a major impact on the manoeuvring properties of the vessel and must therefore be properly understood to ensure the safe passage of the vessel through the restricted waterway. Accordingly, this study performs a series of simulations using commercial FLOW-3D® computational fluid dynamics (CFD) software and the KRISO 3600 TEU container ship model to examine the effects of the vessel speed and distance to bank on the magnitude and time-based variation of the yaw angle and sway force. The results show that for a given vessel speed, the yaw angle and sway force increase as the distance to bank reduces, while for a given distance between the ship and the bank, the yaw angle and sway force increase with an increasing vessel speed. In addition, it is shown that even when a vessel advances at a very low speed, it experiences a significant bank effect when operating in close vicinity to the bank. Overall, the results presented in this study confirm the feasibility of the CFD modelling approach as a means of obtaining detailed insights into the bank effect without the need for time-consuming and expensive ship trials.


2014 ◽  
Vol 493 ◽  
pp. 74-79
Author(s):  
Y.A. Sabtalistia ◽  
S.N.N. Ekasiwi ◽  
B. Iskandriawan

Energy consumption for air conditioning systems (air conditioning system) increased along with the increasing need for fresh air and comfortable in the room especially apartments. FAC system (Floor Air Conditioning) is growing because it is more energy efficient than CAC (Ceiling Air Conditioning) system. However, the position of the AC supply is on the lower level at the FAC system causes draft discomfort becomes greater as air supply closer to the occupants so that thermal comfort can be reduced. Heat mixture of windows, exterior walls, kitchen, and occupants in the studio apartment affect thermal comfort in the room too.This study aims to determine the position of the AC supply which has the best thermal comfort of FAC system in the studio apartment. It can be done by analyzing ADPI (Air Diffusion Performance Index), the distribution of air temperature, wind speed, RH (Relative Humidity), and DR (Draft Risk) to change the position of the AC supply supported by CFD (Computational Fluid Dynamics) simulation.This result prove that AC position 2 (on wall near the kitchen) is more comfortable than AC position 1 (on the bathroom wall) because AC position 2 away from occupied areas, thereby reducing the occurrence of draught discomfort.


Author(s):  
Pritam Roy

Abstract: This research paper presents the investigation of design consideration to achieve thermal comfort and the warm humid climatic zone of West Bengal is considered as the primary study area for the investigation. The varying thermal comfort behavior of humans in different climate conditions and seasons clearly demonstrates that the building design strategy must conform with the region of the building. In this paper, first studying the climatic characteristics of the warm humid region design factors are selected like building materials, cross ventilation, building orientation, roofing orientation, and materials, etc. After that, all those design factors are studied and the effect of all those factors on building in various conditions is observed. Keywords: Warm Humid Climate, Thermal Comfort, Building Materials, U-value, Cross Ventilation, Building Orientation


2006 ◽  
Vol 53 (12) ◽  
pp. 257-264 ◽  
Author(s):  
M.D. Jensen ◽  
P. Ingildsen ◽  
M.R. Rasmussen ◽  
J. Laursen

Aeration tank settling is a control method allowing settling in the process tank during high hydraulic load. The control method is patented. Aeration tank settling has been applied in several waste water treatment plants using the present design of the process tanks. Some process tank designs have shown to be more effective than others. To improve the design of less effective plants, computational fluid dynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during aeration tank settling. Secondly, several process tank design changes have been suggested and tested by means of computational fluid dynamics modelling. The most promising design changes have been found and reported.


Sign in / Sign up

Export Citation Format

Share Document