scholarly journals Controls on Spatial and Temporal Variation in Snow Accumulation on Glaciers in the Southern Alps, New Zealand

2021 ◽  
Author(s):  
◽  
Heather Purdie

<p>Mountain glaciers are already responding to climatic warming, and are expected to make a substantial contribution to sea-level rise in the coming decades. The aim of this investigation in the New Zealand Southern Alps was to improve our understanding of snow accumulation variability on mid-latitude maritime glaciers, in order to allow for better estimation of future glacier mass balance. The specific aim was to investigate snow accumulation processes at a range of spatial and temporal scales, focussing on synoptic-scale atmospheric circulation influences, moisture sources for snow accumulation and local-scale dependencies of snow accumulation in relation to topography. A range of methods were utilised including direct measurement, snow and ice core analysis, statistical analysis and modelling. Snow accumulation in the Southern Alps was found to be derived predominantly from the Tasman Sea, and deposited during low pressure troughs and fronts. Although precipitation increased with elevation, wind processes redistributed this mass. On a ~monthly timescale this redistribution caused an unexpected result, namely that wind deflation of snow on Franz Josef Glacier countered the effects of greater accumulation, and total accumulation was similar at both Franz Josef and Tasman Glaciers over this period. These processes make it challenging to simulate snow accumulation patterns by simply extrapolating snowfall over an orographic barrier from lowland climate station data. On an inter-annual basis, temperature, especially during the ablation season, had most influence on net accumulation, and warm summers served to homogenise winter variability. Consequently, atmospheric circulation patterns that affect summer temperature, for example the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) also influence inter-annual variability in net accumulation. Together, these results highlight the dependence of maritime glaciers in the New Zealand Southern Alps on the prevailing westerly circulation. Although some uncertainty surrounds how global warming will affect atmospheric circulation and synoptic weather patterns, the results of this research indicate that New Zealand glaciers can be expected to lose significant mass in the coming decades if the current positive trend in the SAM continues, and if La Niña events (positive ENSO) become more frequent.</p>

2021 ◽  
Author(s):  
◽  
Heather Purdie

<p>Mountain glaciers are already responding to climatic warming, and are expected to make a substantial contribution to sea-level rise in the coming decades. The aim of this investigation in the New Zealand Southern Alps was to improve our understanding of snow accumulation variability on mid-latitude maritime glaciers, in order to allow for better estimation of future glacier mass balance. The specific aim was to investigate snow accumulation processes at a range of spatial and temporal scales, focussing on synoptic-scale atmospheric circulation influences, moisture sources for snow accumulation and local-scale dependencies of snow accumulation in relation to topography. A range of methods were utilised including direct measurement, snow and ice core analysis, statistical analysis and modelling. Snow accumulation in the Southern Alps was found to be derived predominantly from the Tasman Sea, and deposited during low pressure troughs and fronts. Although precipitation increased with elevation, wind processes redistributed this mass. On a ~monthly timescale this redistribution caused an unexpected result, namely that wind deflation of snow on Franz Josef Glacier countered the effects of greater accumulation, and total accumulation was similar at both Franz Josef and Tasman Glaciers over this period. These processes make it challenging to simulate snow accumulation patterns by simply extrapolating snowfall over an orographic barrier from lowland climate station data. On an inter-annual basis, temperature, especially during the ablation season, had most influence on net accumulation, and warm summers served to homogenise winter variability. Consequently, atmospheric circulation patterns that affect summer temperature, for example the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) also influence inter-annual variability in net accumulation. Together, these results highlight the dependence of maritime glaciers in the New Zealand Southern Alps on the prevailing westerly circulation. Although some uncertainty surrounds how global warming will affect atmospheric circulation and synoptic weather patterns, the results of this research indicate that New Zealand glaciers can be expected to lose significant mass in the coming decades if the current positive trend in the SAM continues, and if La Niña events (positive ENSO) become more frequent.</p>


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


2010 ◽  
Vol 23 (18) ◽  
pp. 4737-4749 ◽  
Author(s):  
Heather Purdie ◽  
Nancy Bertler ◽  
Andrew Mackintosh ◽  
Joel Baker ◽  
Rachael Rhodes

Abstract The authors present stable water isotope and trace element data for fresh winter snow from two temperate maritime glaciers located on opposite sides of the New Zealand Southern Alps. The isotopes δ18O and δD were more depleted at the eastern Tasman Glacier site because of prevailing westerly flow and preferential rainout of heavy isotopes as air masses crossed the Alps. The deuterium excess provided some indication of moisture provenance, with the Tasman Sea contributing ∼70% of the moisture received at Franz Josef and Tasman Glaciers. This source signal was also evident in trace elements, with a stronger marine signal (Na, Mg, and Sr) associated with snow from the Tasman Sea and larger concentrations of terrestrial species (Pb, V, and Zr) in air masses from the Southern and Pacific Oceans. Although postdepositional modification of signals was detected, the results indicate that there is exciting potential to learn more about climate trends and moisture source pathways and to learn from geochemical signals contained in snow and ice in the New Zealand region.


2010 ◽  
Vol 25 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Heather Purdie ◽  
Brian Anderson ◽  
Wendy Lawson ◽  
Andrew Mackintosh

2007 ◽  
Vol 38 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Juan I. López-Moreno ◽  
Sergio M. Vicente-Serrano

Large areas in the Spanish Pyrenees are covered by snow between December and April, especially above 1650 m a.s.l., the location of the cold season 0°C isotherm. However, a significant negative trend in Pyrenean snow pack was detected during the second half of the 20th century. This paper analyses the interannual evolution of snow accumulation in these mountains in relation to the variability of atmospheric circulation. The study considers two spatial scales, from weather types over the Iberian Peninsula to hemispheric atmospheric patterns. The results show strong relationships between the annual occurrence of several weather types and spring snow accumulation. Changes in the frequency of several weather types are explained by the evolution of large scale hemispheric circulation patterns, especially the North Atlantic Oscillation (NAO). Thus, the positive trend observed in the NAO index leads to a decrease in the occurrence of types that favour snow accumulation and an increase in unfavourable conditions for snow pack during the second half of the 20th century.


2021 ◽  
pp. 1-55
Author(s):  
Meilin Zhu ◽  
Lonnie G. Thompson ◽  
Huabiao Zhao ◽  
Tandong Yao ◽  
Wei Yang ◽  
...  

AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy-mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed Xiao Anglong Glacier is close to a balanced condition, with an average value of -53±185 mm w.e. a-1 for 1968-2019. The interannual mass balance variability during 1968-2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968-2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83±185, -210±185, and -10±185 mm w.e. a-1 for 1968-1990, 1991-2012, and 2013-2019, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.


2006 ◽  
Vol 2 (1) ◽  
pp. 79-122 ◽  
Author(s):  
J. Shulmeister ◽  
D. T. Rodbell ◽  
M. K. Gagan ◽  
G. O. Seltzer

Abstract. The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management and mitigation of such changes. We identify three broad areas where PEP science makes key contributions. 1. The patterns of global changes: Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding inter-hemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America was deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems: Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by abrupt climate events: We examine the relationship of ENSO to an abrupt SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future abrupt changes.


Sign in / Sign up

Export Citation Format

Share Document