scholarly journals The Environmental Impact of Expositions:  A Study of Some Contributing Factors

2021 ◽  
Author(s):  
◽  
Shanshan Shen

<p>Since the Great Exhibition of 1851, the exhibition industry has grown steadily in significance. As a result, this thesis argues that associated large environmental impacts have emerged invisibly. Because they are invisible, these impacts have not been paid adequate attention. Few relevant studies have attempted to investigate the consequence of the impacts of expositions and especially current “sustainable” expositions. This thesis investigates the whole life cycle energy use, carbon footprint and ecological footprint of large-scale exhibitions in terms of the contributing factors, including exhibition buildings, visitor-related transportation, and exhibition-related economic aspects. The aim of this research is to determine, within this scope, the environmental impact of large-scale exhibitions and define what a real sustainable exposition and sustainable exhibition building might be. More specially, it creates an appropriate and specific methodology for assessing the environmental impacts generated from exhibition-related factors.  A mixed methods research approach through integration of Life Cycle Analysis and Ecological Footprint Analysis is used. This is to account for whole life cycle energy and resource use and the resulting environmental impacts generated from exhibition buildings (over the construction, operation, maintenance, and demolition phases), different transport modes for visitor travel, and the exhibition-related economic aspect of four case studies. These are the Great Exhibition of 1851 in London, the National Exhibition in Shanghai, Expo 2000 in Hannover, and Expo 2010 in Shanghai. The results of comparative analysis confirm that the total energy and resource consumption of large-scale exhibitions is increasing. The exhibition-related economic aspects consumed most energy and resources, and these rise in relation to the number of visitors, especially visitors from outside the host city. For visitor travel, the choice of visitor transport modes can significantly affect the overall environmental impact. Foreign visitors going to expos by airplane lead to more energy usage than the average travel energy consumption for an expo. For local travelling, using public transport modes can effectively help to reduce energy and resource usage in host cities. For buildings, using the hightech approach currently does little to mitigate the energy and resource usage of large expo pavilions. Due to the short useful life, current sustainable exhibition buildings do not perform as well as their designers imagined. Therefore, the energy flow of sustainable exhibition buildings as influenced by actual useful life needs to be paid more attention in the process of environmental assessment.  Furthermore, it is proposed that the assessment method developed in this research can be used to evaluate the impacts of large-scale events, similar to expositions, on the environment in terms of their energy and resource consumption. The results suggest that the analysis boundary for assessment of event-related environmental impacts needs to be the “whole life cycle” and it needs to be broadened for the environmental assessment of large-scale exhibitions to include not just exhibition buildings, but visitor travel (local and international travel), and event-related economic aspects.</p>

2021 ◽  
Author(s):  
◽  
Shanshan Shen

<p>Since the Great Exhibition of 1851, the exhibition industry has grown steadily in significance. As a result, this thesis argues that associated large environmental impacts have emerged invisibly. Because they are invisible, these impacts have not been paid adequate attention. Few relevant studies have attempted to investigate the consequence of the impacts of expositions and especially current “sustainable” expositions. This thesis investigates the whole life cycle energy use, carbon footprint and ecological footprint of large-scale exhibitions in terms of the contributing factors, including exhibition buildings, visitor-related transportation, and exhibition-related economic aspects. The aim of this research is to determine, within this scope, the environmental impact of large-scale exhibitions and define what a real sustainable exposition and sustainable exhibition building might be. More specially, it creates an appropriate and specific methodology for assessing the environmental impacts generated from exhibition-related factors.  A mixed methods research approach through integration of Life Cycle Analysis and Ecological Footprint Analysis is used. This is to account for whole life cycle energy and resource use and the resulting environmental impacts generated from exhibition buildings (over the construction, operation, maintenance, and demolition phases), different transport modes for visitor travel, and the exhibition-related economic aspect of four case studies. These are the Great Exhibition of 1851 in London, the National Exhibition in Shanghai, Expo 2000 in Hannover, and Expo 2010 in Shanghai. The results of comparative analysis confirm that the total energy and resource consumption of large-scale exhibitions is increasing. The exhibition-related economic aspects consumed most energy and resources, and these rise in relation to the number of visitors, especially visitors from outside the host city. For visitor travel, the choice of visitor transport modes can significantly affect the overall environmental impact. Foreign visitors going to expos by airplane lead to more energy usage than the average travel energy consumption for an expo. For local travelling, using public transport modes can effectively help to reduce energy and resource usage in host cities. For buildings, using the hightech approach currently does little to mitigate the energy and resource usage of large expo pavilions. Due to the short useful life, current sustainable exhibition buildings do not perform as well as their designers imagined. Therefore, the energy flow of sustainable exhibition buildings as influenced by actual useful life needs to be paid more attention in the process of environmental assessment.  Furthermore, it is proposed that the assessment method developed in this research can be used to evaluate the impacts of large-scale events, similar to expositions, on the environment in terms of their energy and resource consumption. The results suggest that the analysis boundary for assessment of event-related environmental impacts needs to be the “whole life cycle” and it needs to be broadened for the environmental assessment of large-scale exhibitions to include not just exhibition buildings, but visitor travel (local and international travel), and event-related economic aspects.</p>


2021 ◽  
Author(s):  
András Polgár ◽  
Karolina Horváth ◽  
Imre Mészáros ◽  
Adrienn Horváth ◽  
András Bidló ◽  
...  

&lt;p&gt;Crop production is applied on about half of Hungary&amp;#8217;s land area, which amounts to approximately 4.5 million hectares. The agricultural activity has significant environmental impacts.&lt;/p&gt;&lt;p&gt;Our work aims the time series investigation of the impacts of large-scale agricultural cultivation&lt;strong&gt; &lt;/strong&gt;on environment and primarily on climate change in&lt;strong&gt; &lt;/strong&gt;the test area by applying environmental life cycle assessment (LCA) method.&lt;/p&gt;&lt;p&gt;The investigated area of Lajta Project can be found in the triangle formed by the settlements Mosonszolnok, J&amp;#225;nossomorja and V&amp;#225;rbalog, in the north-western corner of Hungary, in Gy&amp;#337;r-Moson-Sopron county. The area has intense agri-environment characteristics, almost entirely lacking of grasslands and meadows.&lt;/p&gt;&lt;p&gt;We were looking for the answer to the question &amp;#8220;To what extent does agricultural activity on this area impact the environment and how can it contribute to climate change during a given period?&amp;#8221; The selection of the plants included in the analysis was justified by their significant growing area. We analysed the cultivation data of 5 crops: canola, winter barley, winter wheat, green maize and maize. Material flows of arable crop production technologies were defined in time series by the agricultural parcel register data. These covered the size of the area actually cultivated, the operational processes, records on seeds, fertilizer and pesticide use and harvest data by parcels. The examined environmental inventory database contained also the fuel consumption and lubricating oil usage of machine operations, and the water usage of chemical utilization.&lt;/p&gt;&lt;p&gt;In the life cycle modelling of cultivation, we examined 13 years of maize, 20 years of green maize, 20 years of winter barley, 18 years of winter wheat and 15 years of canola data calculated on 1 ha unit using GaBi life cycle analysis software.&lt;/p&gt;&lt;p&gt;In addition, we also calculated by an average cultivation model for all cultivated plants with reference data to 1 ha and 1 year period.&lt;/p&gt;&lt;p&gt;We applied methods and models in our life cycle impact assessment. According to the values of the impact categories, we set up the following increasing environmental ranking of plant cultivation: (1) canola has minimum environmental impacts followed by (2) green maize and (3) maize with slightly higher values, (4) winter barley has 6 times higher values preceded by (5) winter wheat with a slight difference. The previous environmental ranking of the specific cultivated plants&amp;#8217; contribution was also confirmed as regards the overall environmental impact: canola (1.0%) &amp;#8211; green maize (4.9%) &amp;#8211; maize (7.1%) &amp;#8211; winter barley (43.1%) &amp;#8211; winter wheat (44.0%).&lt;/p&gt;&lt;p&gt;Environmental impact category indicator results cumulated to total cultivation periods and total crop growing areas (quantitative approach) display the specific environmental footprints by crops. Increasing environmental ranking of environmental impacts resulted from cultivating the sample area is the following: (1) canola &amp;#8211; (2) maize &amp;#8211; (3) green maize &amp;#8211; (4) winter barley &amp;#8211; (5) winter wheat. The slight difference resulted in the rankings in quantitative approach according to the rankings of territorial approach on the investigated area is due to the diversity of cultivation time factor and the crop-growing parameter of the specific crops.&lt;/p&gt;&lt;p&gt;Acknowledgement: Our research was supported by the &amp;#8222;Lajta-Project&amp;#8221;.&lt;/p&gt;


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9132-9145
Author(s):  
Xiang Yu ◽  
Lizhen Zeng ◽  
Guofang Zhang ◽  
Hankun Wang

Bamboo floorings are the most important industrial products in the bamboo sector. With the aim of providing a useful guide for the development of bamboo floorings, this study quantitatively assessed the environmental impacts of the two primary types of bamboo floorings, laminated flooring and scrimber flooring, using life cycle assessment (LCA) software SimaPro. The purpose of this study was to find out which type of bamboo flooring is more environmentally friendly through quantitatively analyzing the input and output of materials and energy during the whole life cycle of the two types of flooring products. The present study demonstrated that the majority of the environmental burdens were associated with the process of bamboo strip production for bamboo laminated flooring (59.3%), and the process of panel processing for bamboo scrimber floorings (56.9%). In terms of environmental loads, bamboo laminated flooring was considered more sustainable than bamboo scrimber flooring, as the total environmental loads of bamboo scrimber flooring was approximately 1.6 times that of bamboo laminated flooring.


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2016 ◽  
Vol 106 (03) ◽  
pp. 136-140
Author(s):  
R. Miehe ◽  
M. Wiedenmann ◽  
T. Prof. Bauernhansl

Die Ökobilanz hat sich als Instrument zur Bewertung der Umweltauswirkungen von Produkten und Prozessen durchgesetzt. Dennoch stellt ihre Durchführung Nutzer immer wieder vor Herausforderungen. Der Fachartikel präsentiert einen Ansatz für eine vergleichende Betrachtung der ökologischen Auswirkungen des unternehmerischen Handelns auf Basis der jeweiligen Unternehmens- und Branchenumsätze. Der Umsatz-Nachhaltigkeitsindex soll als Konzept für ein Benchmark für Unternehmen einer Branche dienen. &nbsp; Life Cycle Assessment has prevailed as an instrument to evaluate the environmental impact of products and processes. Its execution, however, poses a challenge to operators. In this paper, we present an approach for a comparative examination of environmental impacts of industrial behavior based on the turnover of companies and their equivalent sectors. The Turnover-Sustainability-Index serves as a benchmark for companies within a sector.


Author(s):  
Alma Delia Delia Román Gutiérrez ◽  
Juan Hernandez Avila ◽  
Antonia Karina Vargas M. ◽  
Eduardo Cerecedo Saenz ◽  
Eleazar Salinas-Rodríguez

Usually in the manufacture of beer by fermentation of barley, in both industrialized and developing countries significant amounts of organic solid waste are produced from barley straw. These possibly have an impact on the carbon footprint with an effect on global warming. According to this, it is important to reduce environmental impact of these solid residues, and an adequate way is the recycling using them as raw material for the elaboration of handmade paper. Therefore, it is required to manage this type of waste by analyzing the environmental impact, and thus be able to identify sustainable practices for the treatment of this food waste, evaluating its life cycle, which is a useful methodology to estimate said environmental impacts. It is because of this work shows the main results obtained using the life cycle analysis (LCA) methodology, to evaluate the possible environmental impacts during the waste treatment of a brewery located in the state of Hidalgo, Mexico. The residues evaluated were barley straw, malt residues and spent grain, and at the end, barley straw was selected to determine in detail its environmental impact and its reuse, the sheets analyzed presented a grammage that varies from 66 g/m2 and 143 g/m2, resistance to burst was 117 to 145 kpa, with a crystallinity of 34.4% to 37.1%.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jia Wu

PurposeThe study shows that with the progress of building technologies and building materials, the scale of buildings has increased. But in earthquake-prone areas, large-scale buildings mean higher risks; therefore improving the seismic capacity of buildings is an important measure to reduce the risk of buildings.Design/methodology/approachIn this study, the isolation structure of buildings was introduced briefly, and the cost-benefit based optimization model of the isolation structure was constructed. The optimization of the isolation structure was carried out from the perspective of benefit analysis. Then, two buildings with the same structure were analyzed as examples. One kept the original isolation structure, and the other optimized the isolation structure with the optimization model.FindingsThe final results showed that the optimized isolation structure had a lower input cost ratio, i.e. it had a higher benefit in the same whole life cycle, and the expected loss cost of the structure produced in the same life cycle was lower.Originality/valueIn conclusion, the optimization model of the isolated structure based on benefit analysis can effectively improve the benefit of building isolation structure produced in the whole life cycle.


2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.


2020 ◽  
Vol 8 (9) ◽  
pp. 660
Author(s):  
Sang Soo Hwang ◽  
Sung Jin Gil ◽  
Gang Nam Lee ◽  
Ji Won Lee ◽  
Hyun Park ◽  
...  

In this study, the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO), natural gas, and hydrogen with various energy sources for a 12,000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK, i.e., MGO from Saudi Arabia and natural gas from Qatar, these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal, nuclear energy, renewable energy, and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-to- Tank, Tank-to-Wake, and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP), acidification potential (AP), photochemical potential (POCP), eutrophication potential (EP), and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover, it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small, nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.


Sign in / Sign up

Export Citation Format

Share Document