scholarly journals Learning from the Artist: Theory and Practice of Example-Based Character Deformation

2021 ◽  
Author(s):  
◽  
John Lewis

<p>Movie and game production is very laborious, frequently involving hundreds of person-years for a single project. At present this work is difficult to fully automate, since it involves subjective and artistic judgments.  Broadly speaking, in this thesis we explore an approach that works with the artist, accelerating their work without attempting to replace them. More specifically, we describe an “example-based” approach, in which artists provide examples of the desired shapes of the character, and the results gradually improve as more examples are given. Since a character’s skin shape deforms as the pose or expression changes, or particular problem will be termed character deformation.  The overall goal of this thesis is to contribute a complete investigation and development of an example-based approach to character deformation. A central observation guiding this research is that character animation can be formulated as a high-dimensional problem, rather than the two- or three-dimensional viewpoint that is commonly adopted in computer graphics. A second observation guiding our inquiry is that statistical learning concepts are relevant. We show that example-based character animation algorithms can be informed, developed, and improved using these observations.  This thesis provides definitive surveys of example-based facial and body skin deformation.  This thesis analyzes the two leading families of example-based character deformation algorithms from the point of view of statistical regression. In doing so we show that a wide variety of existing tools in machine learning are applicable to our problem. We also identify several techniques that are not suitable due to the nature of the training data, and the high-dimensional nature of this regression problem. We evaluate the design decisions underlying these example-based algorithms, thus providing the groundwork for a ”best practice” choice of specific algorithms.  This thesis develops several new algorithms for accelerating example-based facial animation. The first algorithm allows unspecified degrees of freedom to be automatically determined based on the style of previous, completed animations. A second algorithm allows rapid editing and control of the process of transferring motion capture of a human actor to a computer graphics character.  The thesis identifies and develops several unpublished relations between the underlying mathematical techniques.  Lastly, the thesis provides novel tutorial derivations of several mathematical concepts, using only the linear algebra tools that are likely to be familiar to experts in computer graphics.  Portions of the research in this thesis have been published in eight papers, with two appearing in premier forums in the field.</p>

2021 ◽  
Author(s):  
◽  
John Lewis

<p>Movie and game production is very laborious, frequently involving hundreds of person-years for a single project. At present this work is difficult to fully automate, since it involves subjective and artistic judgments.  Broadly speaking, in this thesis we explore an approach that works with the artist, accelerating their work without attempting to replace them. More specifically, we describe an “example-based” approach, in which artists provide examples of the desired shapes of the character, and the results gradually improve as more examples are given. Since a character’s skin shape deforms as the pose or expression changes, or particular problem will be termed character deformation.  The overall goal of this thesis is to contribute a complete investigation and development of an example-based approach to character deformation. A central observation guiding this research is that character animation can be formulated as a high-dimensional problem, rather than the two- or three-dimensional viewpoint that is commonly adopted in computer graphics. A second observation guiding our inquiry is that statistical learning concepts are relevant. We show that example-based character animation algorithms can be informed, developed, and improved using these observations.  This thesis provides definitive surveys of example-based facial and body skin deformation.  This thesis analyzes the two leading families of example-based character deformation algorithms from the point of view of statistical regression. In doing so we show that a wide variety of existing tools in machine learning are applicable to our problem. We also identify several techniques that are not suitable due to the nature of the training data, and the high-dimensional nature of this regression problem. We evaluate the design decisions underlying these example-based algorithms, thus providing the groundwork for a ”best practice” choice of specific algorithms.  This thesis develops several new algorithms for accelerating example-based facial animation. The first algorithm allows unspecified degrees of freedom to be automatically determined based on the style of previous, completed animations. A second algorithm allows rapid editing and control of the process of transferring motion capture of a human actor to a computer graphics character.  The thesis identifies and develops several unpublished relations between the underlying mathematical techniques.  Lastly, the thesis provides novel tutorial derivations of several mathematical concepts, using only the linear algebra tools that are likely to be familiar to experts in computer graphics.  Portions of the research in this thesis have been published in eight papers, with two appearing in premier forums in the field.</p>


2021 ◽  
Vol 11 (2) ◽  
pp. 472
Author(s):  
Hyeongmin Cho ◽  
Sangkyun Lee

Machine learning has been proven to be effective in various application areas, such as object and speech recognition on mobile systems. Since a critical key to machine learning success is the availability of large training data, many datasets are being disclosed and published online. From a data consumer or manager point of view, measuring data quality is an important first step in the learning process. We need to determine which datasets to use, update, and maintain. However, not many practical ways to measure data quality are available today, especially when it comes to large-scale high-dimensional data, such as images and videos. This paper proposes two data quality measures that can compute class separability and in-class variability, the two important aspects of data quality, for a given dataset. Classical data quality measures tend to focus only on class separability; however, we suggest that in-class variability is another important data quality factor. We provide efficient algorithms to compute our quality measures based on random projections and bootstrapping with statistical benefits on large-scale high-dimensional data. In experiments, we show that our measures are compatible with classical measures on small-scale data and can be computed much more efficiently on large-scale high-dimensional datasets.


2009 ◽  
Vol 19 (09) ◽  
pp. 2823-2869 ◽  
Author(s):  
Z. E. MUSIELAK ◽  
D. E. MUSIELAK

Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rössler and Van der Pol oscillators, modified canonical Chua's circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.


Author(s):  
Jesper Kristensen ◽  
Isaac Asher ◽  
Liping Wang

Gaussian Process (GP) regression is a well-established probabilistic meta-modeling and data analysis tool. The posterior distribution of the GP parameters can be estimated using, e.g., Markov Chain Monte Carlo (MCMC). The ability to make predictions is a key aspect of using such surrogate models. To make a GP prediction, the MCMC chain as well as the training data are required. For some applications, GP predictions can require too much computational time and/or memory, especially for many training data points. This motivates the present work to represent the GP in an equivalent polynomial (or other global functional) form called a portable GP. The portable GP inherits many benefits of the GP including feature ranking via Sobol indices, robust fitting to non-linear and high-dimensional data, accurate uncertainty estimates, etc. The framework expands the GP in a high-dimensional model representation (HDMR). After fitting each HDMR basis function with a polynomial, they are all added together to form the portable GP. A ranking of which basis functions to use in the fitting process is automatically provided via Sobol indices. The uncertainty from the fitting process can be propagated to the final GP polynomial estimate. In applications where speed and accuracy are paramount, spline fits to the basis functions give very good results. Finally, portable BHM provides an alternative set of assumptions with regards to extrapolation behavior which may be more appropriate than the assumptions inherent in GPs.


2018 ◽  
Vol 14 (3) ◽  
pp. 69-81 ◽  
Author(s):  
Peter Massingham ◽  
Rada Massingham ◽  
Alan Pomering

This article discusses knowledge management system design for SSNFPOs. The transfer of best practice knowledge management to SSNFPOs is not easy. SSNFPOs have different strategies and ways of doing business compared to ‘for-profit' organisations. Sector reforms in disability services, aged care, and child services in Australia threaten to disrupt social value as new for-profit rivals enter and pursue economic value. In response, the case study organisation (CSO) has been working with the research team to consider how knowledge management might help it become a stronger organisation and ensure its survival and growth in the reformed sector. The research was informed by discussions involving the CSO's management and the research team over an 18 month period. A general framework for designing knowledge management for SSNFPOs was developed. It involves six theoretical platforms, along with problems associated with theory and practice, how knowledge management may address these problems, and measures of impact.


Author(s):  
Dang Thi Thu Hien ◽  
Hoang Xuan Huan ◽  
Le Xuan Minh Hoang

Radial Basis Function (RBF) neuron network is being applied widely in multivariate function regression. However, selection of neuron number for hidden layer and definition of suitable centre in order to produce a good regression network are still open problems which have been researched by many people. This article proposes to apply grid equally space nodes as the centre of hidden layer. Then, the authors use k-nearest neighbour method to define the value of regression function at the center and an interpolation RBF network training algorithm with equally spaced nodes to train the network. The experiments show the outstanding efficiency of regression function when the training data has Gauss white noise.


2021 ◽  
Vol 14 (2) ◽  
pp. 187-196
Author(s):  
Francisco Javier Triveno Vargas ◽  
Hugo Siles Alvarado

STEM education is a strategy based on four disciplines (science, technology, engineering and mathematics), integrated in an innovative interdisciplinary approach. Although, the concept of STEM education is more relevant today, the discussion of a teaching model with special attention in the four subjects aforementioned began in the early 2000s. Taking into account this context, the strategy presented in this paper has been disseminated in Bolivia’s main universities for the last five years. A country that has not yet managed to associate basic disciplines such as calculus, matrix algebra, and/or differential equations to solve problems of an applicative nature, that is, to establish the link between theory and practice. To establish the connection, it is necessary to deduce differential equations associated with practical problems; solve these equations with numerical methods, appeal to the simulation concept to later introduce programming languages like Python/VPython to build virtual laboratories. The classical problem addressed for this purpose is the satellite of two degrees of freedom.


2021 ◽  
Vol 33 (3) ◽  
pp. 629-642
Author(s):  
Sana Talmoudi ◽  
Tetsuya Kanada ◽  
Yasuhisa Hirata ◽  
◽  

Predictive maintenance, which means detection of failure ahead of time, is one of the pillars of Industry 4.0. An effective method for this technique is to track early signs of degradation before failure occurs. This paper presents an innovative failure predictive scheme for machines. The proposed scheme combines the use of the full spectrum of vibration data from the machines and a data visualization technology. This scheme requires no training data and can be started quickly after installation. First, we proposed to use the full spectrum (as high-dimensional data vectors) with no cropping and no complex feature extraction and to visualize the data behavior by mapping the high-dimensional vectors into a two-dimensional (2D) map. This ensures simplicity of the process and less possibility of overlooking important information as well as provide a human-friendly and human-understandable output. Second, we developed a real-time data tracker that can predict failure at an appropriate time with sufficient allowance for maintenance by plotting real-time frequency spectrum data of the target machine on a 2D map created from normal data. Finally, we verified our proposal using vibration data of bearings from real-world test-to-failure measurements obtained from the IMS dataset.


Sign in / Sign up

Export Citation Format

Share Document