scholarly journals Chemical genetic analyses of compounds derived from feijoa fruit

2021 ◽  
Author(s):  
◽  
Mona Mokhtari

<p>Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Compounds with anticancer, anti-inflammatory, antibacterial and antifungal activities have been isolated from feijoa; however, the diversity of these compounds is not known nor is the mechanism of action of any of these compounds. I hypothesized that identifying compounds in novel feijoa cultivars would improve our understanding of the chemical diversity of antifungal compounds in feijoa and determining the antifungal mechanism of action of feijoa compounds would provide insight into the pharmaceutical potential of these compounds. First, GC-MS analyses were used to obtain an unbiased profile of 151 compounds from 16 cultivars of feijoa, of which six were novel cultivars. Multivariate analysis distinguished 18 compounds that were significantly and positively correlated to antifungal activity based on growth inhibition of Saccharomyces cerevisiae, of which seven had not previously been described from feijoa. Two novel cultivars were identified as the most bioactive cultivars, and the compound 4-cyclopentene-1,3-dione found in a couple of cultivars was potently antifungal against human pathogenic isolates of four Candida species. Second, chemical genetic analyses were used to investigate the mechanism of action of estragole, an antifungal compound previously isolated from feijoa. The chemical genetic profile of estragole was distinct from that of other known antifungal compounds, suggesting the mechanism of action of estragole has a novel antifungal mechanism. Third, chemical genetic analyses were used to investigate the mechanism of action of an ethanol adduct of vescalagin (EtOH-vescalagin) isolated from feijoa. We showed EtOH-vescalagin is antifungal against human pathogenic strains. Genome-wide chemical genetic analyses of EtOH-vescalagin indicated antifungal activity is mediated by disruptions of iron homeostasis, zinc homeostasis and retromer recycling through iron chelation. Overall, these results indicate the chemical and biological value of feijoa as a source of antifungal drugs.</p>

2021 ◽  
Author(s):  
◽  
Mona Mokhtari

<p>Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Compounds with anticancer, anti-inflammatory, antibacterial and antifungal activities have been isolated from feijoa; however, the diversity of these compounds is not known nor is the mechanism of action of any of these compounds. I hypothesized that identifying compounds in novel feijoa cultivars would improve our understanding of the chemical diversity of antifungal compounds in feijoa and determining the antifungal mechanism of action of feijoa compounds would provide insight into the pharmaceutical potential of these compounds. First, GC-MS analyses were used to obtain an unbiased profile of 151 compounds from 16 cultivars of feijoa, of which six were novel cultivars. Multivariate analysis distinguished 18 compounds that were significantly and positively correlated to antifungal activity based on growth inhibition of Saccharomyces cerevisiae, of which seven had not previously been described from feijoa. Two novel cultivars were identified as the most bioactive cultivars, and the compound 4-cyclopentene-1,3-dione found in a couple of cultivars was potently antifungal against human pathogenic isolates of four Candida species. Second, chemical genetic analyses were used to investigate the mechanism of action of estragole, an antifungal compound previously isolated from feijoa. The chemical genetic profile of estragole was distinct from that of other known antifungal compounds, suggesting the mechanism of action of estragole has a novel antifungal mechanism. Third, chemical genetic analyses were used to investigate the mechanism of action of an ethanol adduct of vescalagin (EtOH-vescalagin) isolated from feijoa. We showed EtOH-vescalagin is antifungal against human pathogenic strains. Genome-wide chemical genetic analyses of EtOH-vescalagin indicated antifungal activity is mediated by disruptions of iron homeostasis, zinc homeostasis and retromer recycling through iron chelation. Overall, these results indicate the chemical and biological value of feijoa as a source of antifungal drugs.</p>


2021 ◽  
Vol 25 (7) ◽  
pp. 177-182
Author(s):  
Rahul Kanaoujiya ◽  
Shekhar Srivastava

Ruthenium is recognized as a highly attractive alternative to platinum since the toxicity of many ruthenium compounds is lower and some complexes are quite selective for antifungal drugs. Ruthenium has various chemical properties these chemical properties are very useful for antifungal drug design. Ruthenium compounds have several types of advantages as antifungal drugs because of lower toxicity. . Ruthenium has unique properties making it of particularly use as fungal in drug design specially in antifungal drugs. Several types of ruthenium complexes and their antifungal activity standards are described here.


2020 ◽  
Vol 6 (3) ◽  
pp. 142
Author(s):  
Kyle McEvoy ◽  
Tyler G. Normile ◽  
Maurizio Del Poeta

Fungal infections are becoming more prevalent and problematic due to the continual rise of immune deficient patients as well as the progressive development of drug resistance towards currently available antifungal drugs. There has been a significant increase in the development of antifungal compounds with a similar mechanism of action of current drugs. In contrast, there has been very little progress in developing compounds inhibiting totally new fungal targets or/and fungal pathways. This review focuses on novel compounds recently discovered to target the fungal sphingolipids and their metabolizing enzymes.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Marhiah C. Montoya ◽  
Sarah Beattie ◽  
Kathryn M. Alden ◽  
Damian J. Krysan

ABSTRACT The antifungal pharmacopeia is critically small, particularly in light of the recent emergence of multidrug-resistant pathogens, such as Candida auris. Here, we report that derivatives of the antimalarial drug mefloquine have broad-spectrum antifungal activity against pathogenic yeasts and molds. In addition, the mefloquine derivatives have activity against clinical isolates that are resistant to one or more of the three classes of antifungal drugs currently used to treat invasive fungal infections, indicating that they have a novel mechanism of action. Importantly, the in vitro toxicity profiles obtained using human cell lines indicated that the toxicity profiles of the mefloquine derivatives are very similar to those of the parent mefloquine, despite being up to 64-fold more active against fungal cells. In addition to direct antifungal activity, subinhibitory concentrations of the mefloquine derivatives inhibited the expression of virulence traits, including filamentation in Candida albicans and capsule formation/melanization in Cryptococcus neoformans. Mode/mechanism-of-action experiments indicated that the mefloquine derivatives interfere with both mitochondrial and vacuolar function as part of a multitarget mechanism of action. The broad-spectrum scope of activity, blood-brain barrier penetration, and large number of previously synthesized analogs available combine to support the further optimization and development of the antifungal activity of this general class of drug-like molecules.


2021 ◽  
Vol 16 (10) ◽  
pp. 92-101
Author(s):  
Muralidharan Sasidhar ◽  
Selvam Masilamani ◽  
Abirami Baskaran ◽  
Manigundan Kaari ◽  
Radhakrishnan Manikkam

Prolonged use of antifungal drugs has led to the emergence of drug resistant fungal pathogens that pose serious threat to public health and challenge to researchers for discovering novel antifungal agents. Natural products from the members of phylum actinobacteria are the promising source of antibiotics including antifungal agents. Twenty-seven morphologically different actinobacterial cultures were isolated from the forest soils of Sabarimala, Kerala and Lucknow, Uttar Pradesh. Actinobacterial strain LA34 showed promising antifungal activity when screened against Candida albicans and Cryptococcus neoformans, hence selected as potential strain. Antifungal compounds were produced from the strain LA34 using agar surface fermentation and its extraction was done using ethyl acetate and methanol. Results of cultural, microscopic and physiological characteristics as well as cell wall amino acid and sugars analysis revealed that the strain LA34 was nonstreptomyces or rare actinobacterium. Various carbon sources, nitrogen sources and minerals were found to influence antifungal compound production by the strain LA34. The present study concluded that the rare actinobacterial strain LA34 isolated from Lucknow forest soil is a promising source for the isolation of antifungal compounds.


2019 ◽  
Vol 15 (6) ◽  
pp. 648-658 ◽  
Author(s):  
Manzoor Ahmad Malik ◽  
Shabir Ahmad Lone ◽  
Parveez Gull ◽  
Ovas Ahmad Dar ◽  
Mohmmad Younus Wani ◽  
...  

Background: The increasing incidence of fungal infections, especially caused by Candida albicans, and their increasing drug resistance has drastically increased in recent years. Therefore, not only new drugs but also alternative treatment strategies are promptly required. Methods: We previously reported on the synergistic interaction of some azole and non-azole compounds with fluconazole for combination antifungal therapy. In this study, we synthesized some non-azole Schiff-base derivatives and evaluated their antifungal activity profile alone and in combination with the most commonly used antifungal drugs- fluconazole (FLC) and amphotericin B (AmB) against four drug susceptible, three FLC resistant and three AmB resistant clinically isolated Candida albicans strains. To further analyze the mechanism of antifungal action of these compounds, we quantified total sterol contents in FLC-susceptible and resistant C. albicans isolates. Results: A pyrimidine ring-containing derivative SB5 showed the most potent antifungal activity against all the tested strains. After combining these compounds with FLC and AmB, 76% combinations were either synergistic or additive while as the rest of the combinations were indifferent. Interestingly, none of the combinations was antagonistic, either with FLC or AmB. Results interpreted from fractional inhibitory concentration index (FICI) and isobolograms revealed 4-10-fold reduction in MIC values for synergistic combinations. These compounds also inhibit ergosterol biosynthesis in a concentration-dependent manner, supported by the results from docking studies. Conclusion: The results of the studies conducted advocate the potential of these compounds as new antifungal drugs. However, further studies are required to understand the other mechanisms and in vivo efficacy and toxicity of these compounds.


BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 583 ◽  
Author(s):  
Md Alamgir ◽  
Veronika Eroukova ◽  
Matthew Jessulat ◽  
Jianhua Xu ◽  
Ashkan Golshani

2020 ◽  
Vol 65 (10) ◽  
pp. 82-91
Author(s):  
Phuong Nguyen Anh ◽  
Mai Le Thi Tuyet ◽  
Trung Trieu Anh

Mucormycosis is an uncommon but life-threatening invasive fungal infection, mostly occurs in immunocompromised patients. Lacking the appropriate antifungal drugs is one of the reasons that lead to difficulties in the management of mucormycosis. Curcuma longa has been used traditionally and widely to treat various diseases, including fungal infections. In the search for novel antifungal compounds from natural resources, we evaluated the effect of rhizome crude extract of C. longa on Mucor circinelloides – a causal agent of mucormycosis. The results of screening, using broth dilution method and agar-well diffusion method, showed that the C. longa extract exhibited promising antifungal activity against the fungus M. circinelloides. In liquid medium, C. longa extract decreased the ability of spore germination and the speed of hyphae formation of M. circinelloides decreased by up to approximately 70% and 90%, respectively. Besides, in a solid medium, the crude extract presented similar activity with amphotericin B (400 μg\mL) in decreasing the growth of M. circinelloides by nearly 77%. Moreover, the extract of C. longa also likely to induce the yeast-like type of growth of the dimorphic M. circinelloides in the early stage. These results suggest the plant could be a potential source for further study on biochemical components and the mechanism of its antifungal activity.


2021 ◽  
Vol 27 ◽  
Author(s):  
Awad Shala ◽  
Shweta Singh ◽  
Saif Hameed ◽  
.M.P. Khurana

: Candida albicans is one of the main agents responsible for opportunistic pathogenic infections. The progressive emergence of fungal resistance to conventional antibiotics and its side effects as well as treatment costs are considered as major limitations for antifungal drugs. It has drawn scientists' attention to search for potential substitution and therapeutic reliable alternatives for the antifungal compounds from sources like medicinal plants, which contain numerous bioactive compounds such as essential oils. Essential oils (EO) apart from having lower toxicity and better biodegradability are eco-friendly in nature as compared with conventional antibiotics. Furthermore, extracted essential oils have been reported to possess potent antimicrobial, anti-inflammatory and antioxidant properties that nominate them as natural promising candidates to combat numerous fungal ailments. Thus, determination of antifungal efficacy of essential oil-bearing plants on Candida spp. will provide miscellaneous knowledge for future clinical studies that are required for development of new formulations as alternative therapeutic agents to control the growth of Candida species. Therefore, this review summarizes the gist of major essential oils that have been investigated for their anti- Candida potential with some recommendations for further study.


Sign in / Sign up

Export Citation Format

Share Document