scholarly journals Interconnection Impact Analysis of Solar Photovoltaic Systems with Distribution Networks

2021 ◽  
Author(s):  
◽  
Michael Emmanuel

<p>As the solar PV technology continues to evolve as the most common distributed generation (DG) coupled with increasing interconnection requests, accurate modelling of the potential operational impacts of this game-changer is pivotal in order to maintain the reliability of the electric grid. The overall goal of this research is to conduct an interconnection impact analysis of solar PV systems at increasing penetration levels subject to the feeder constraints within the distribution network. This is carried out with a time series power flow analysis method to capture the time-varying nature of solar PV and load with their interactions with the distribution network device operations. Also, this thesis analyses multiple PV systems scenarios and a wide range of possible impacts to enable distribution system planners and operators understand and characterize grid operations with the integration of PV systems.  An evaluation of the operational and reliability performance of a grid-connected PV system based on IEC standards and industry guides is performed to detect design failures and avoid unnecessary delays to PV penetration. The performance analysis metrics in this research allow cross-comparison between PV systems operating under different climatic conditions. This thesis shows the significant impact of temperature on the overall performance of the PV system. This research conducts an interconnection study for spatially distributed single-phase grid-tied PV systems with a five minute-resolution load and solar irradiance data on a typical distribution feeder. Also, this research compares the performance of generator models, PQ and P |V |, for connecting PV-DG with the distribution feeder with their respective computational costs for a converged power flow solution.  More so, a method capable of computing the incremental capacity additions, measuring risks and upgrade deferral provided by PV systems deployments is investigated in this research. This thesis proposes surrogate metrics, energy exceeding normal rating and unserved energy, for evaluating system reliability and capacity usage which can be a very useful visualization tool for utilities. Also, sensitivity analysis is performed for optimal location of the PV system on the distribution network. This is important because optimal integration of PV systems is often near-optimal for network capacity relief issues as well.  This thesis models the impact of centralized PV variability on the electric grid using the wavelet variability model (WVM) which considers the key factors that affect PV variability such as PV footprint, density and cloud movement over the entire PV plant. The upscaling advantage from a single module and point irradiance sensor to geographic smoothing over the entire PV footprint in WVM is used to simulate effects of a utility-interactive PV system on the distribution feeder.  Further, the PV interconnection scenarios presented in this thesis have been modelled with different time scales ranging from seconds to hours in order to accurately capture and represent various impacts. The analysis and advancements presented in this thesis will help utilities and other stakeholders to develop realistic projections of PV systems impacts on the grid. Also, this research will assist in understanding and full characterization of PV integration with the grid to avoid unnecessary delays.</p>

2021 ◽  
Author(s):  
◽  
Michael Emmanuel

<p>As the solar PV technology continues to evolve as the most common distributed generation (DG) coupled with increasing interconnection requests, accurate modelling of the potential operational impacts of this game-changer is pivotal in order to maintain the reliability of the electric grid. The overall goal of this research is to conduct an interconnection impact analysis of solar PV systems at increasing penetration levels subject to the feeder constraints within the distribution network. This is carried out with a time series power flow analysis method to capture the time-varying nature of solar PV and load with their interactions with the distribution network device operations. Also, this thesis analyses multiple PV systems scenarios and a wide range of possible impacts to enable distribution system planners and operators understand and characterize grid operations with the integration of PV systems.  An evaluation of the operational and reliability performance of a grid-connected PV system based on IEC standards and industry guides is performed to detect design failures and avoid unnecessary delays to PV penetration. The performance analysis metrics in this research allow cross-comparison between PV systems operating under different climatic conditions. This thesis shows the significant impact of temperature on the overall performance of the PV system. This research conducts an interconnection study for spatially distributed single-phase grid-tied PV systems with a five minute-resolution load and solar irradiance data on a typical distribution feeder. Also, this research compares the performance of generator models, PQ and P |V |, for connecting PV-DG with the distribution feeder with their respective computational costs for a converged power flow solution.  More so, a method capable of computing the incremental capacity additions, measuring risks and upgrade deferral provided by PV systems deployments is investigated in this research. This thesis proposes surrogate metrics, energy exceeding normal rating and unserved energy, for evaluating system reliability and capacity usage which can be a very useful visualization tool for utilities. Also, sensitivity analysis is performed for optimal location of the PV system on the distribution network. This is important because optimal integration of PV systems is often near-optimal for network capacity relief issues as well.  This thesis models the impact of centralized PV variability on the electric grid using the wavelet variability model (WVM) which considers the key factors that affect PV variability such as PV footprint, density and cloud movement over the entire PV plant. The upscaling advantage from a single module and point irradiance sensor to geographic smoothing over the entire PV footprint in WVM is used to simulate effects of a utility-interactive PV system on the distribution feeder.  Further, the PV interconnection scenarios presented in this thesis have been modelled with different time scales ranging from seconds to hours in order to accurately capture and represent various impacts. The analysis and advancements presented in this thesis will help utilities and other stakeholders to develop realistic projections of PV systems impacts on the grid. Also, this research will assist in understanding and full characterization of PV integration with the grid to avoid unnecessary delays.</p>


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1443 ◽  
Author(s):  
Abdullah Alshahrani ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Elamin Mohamed ◽  
Saleh Alotaibi

Decarbonisation, energy security and expanding energy access are the main driving forces behind the worldwide increasing attention in renewable energy. This paper focuses on the solar photovoltaic (PV) technology because, currently, it has the most attention in the energy sector due to the sharp drop in the solar PV system cost, which was one of the main barriers of PV large-scale deployment. Firstly, this paper extensively reviews the technical challenges, potential technical solutions and the research carried out in integrating high shares of small-scale PV systems into the distribution network of the grid in order to give a clearer picture of the impact since most of the PV systems installations were at small scales and connected into the distribution network. The paper reviews the localised technical challenges, grid stability challenges and technical solutions on integrating large-scale PV systems into the transmission network of the grid. In addition, the current practices for managing the variability of large-scale PV systems by the grid operators are discussed. Finally, this paper concludes by summarising the critical technical aspects facing the integration of the PV system depending on their size into the grid, in which it provides a strong point of reference and a useful framework for the researchers planning to exploit this field further on.


2017 ◽  
Vol 24 (2) ◽  
pp. 358-382 ◽  
Author(s):  
Minhyun LEE ◽  
Taehoon HONG ◽  
Choongwan KOO ◽  
Chan-Joong KIM

Despite the steady growth and price reductions of solar photovoltaic (PV) market in the United States (U.S.), the solar PV market still depends on financial support and incentives due to its high initial investment cost. Therefore, this study aimed to conduct a break-even analysis and impact analysis of residential solar PV systems by state in the U.S., focused on state solar incentives. Three indexes (i.e., net present value, profitability index (PI) and payback period) were used to evaluate the investment value of the residential solar PV systems considering state solar incentives. Furthermore, PI increase ratio was used to analyze the impact of state solar incentives on the economic feasibility of the residential solar PV systems in each state. As a result, it was found that 18 of the 51 target cities have reached the break-even point and seven of the 51 target cities showed great improvement of the economic feasibility of solar PV systems in the U.S. due to excellent state solar incentives. The results of this study can help policy makers to evaluate and compare the economic impacts of the residential solar PV systems by state in the U.S.


Author(s):  
David A. Torrey ◽  
James M. Kokernak

State-sponsored incentives have played a significant role in driving the demand for residential and small commercial photovoltaic (PV) systems. All state incentive programs are tied to the power rating of the system, though some states also offer energy production incentives. Unfortunately, there is a disconnect between the power rating of a PV system and the energy that system produces over its lifetime. It is extremely important to consider system productivity, which goes well beyond the efficiency of the components. System productivity is tied directly to the structure of the array, not just the efficiency of the components and the quality of the installation. This paper examines the issues associated with improving solar PV system productivity. The focus is on comparing a series-parallel array configuration to a series-string array configuration and the impact on energy production. Partial shade is used to highlight substantial differences between the operation of the two array configurations.


2021 ◽  
Vol 13 (23) ◽  
pp. 13209
Author(s):  
Osama A. Marzouk

An energy modeler for solar photovoltaic (PV) systems may be limited to climatic data of certain major cities, not covering the one for which the PV system is intended. Additionally, a person not skilled in solar PV modeling may still desire a quick estimate of PV system electricity generation to help decide the level of investment in PV systems. This work addresses these points by establishing lookup tables to summarize predicted electricity generation, solar irradiation, and optimum orientation at various locations in the Sultanate of Oman. The results are produced by processing simulation data using the online open-access tool PVGIS (Photovoltaic Geographical Information System) of the European Commission’s Joint Research Centre (EC-JRC). The tables cover 40 out of the country’s 61 s-level administrative divisions (wilayats) and cover fixed and movable PV panels. The results show that the yearly electricity generation can change up to 11.86% due to the change of location. Two-axis PV tracking offers a small improvement (about 4% on average) over single-vertical-axis tracking but offers noticeable improvement (about 34% on average) over optimally oriented fixed PV panels. Monthly profiles of expected PV electricity generation, as well as the generation drop due to changing the PV mounting from free standing to building integrated, were examined for three locations. As general perspectives that may be of interest to global readers, this work provides quantitative evidence of the overall accuracy of the PVGIS-SARAH database through comparison with ground-measured global horizontal irradiation (GHI). In addition, a full example is presented considering 12 different countries in the northern and southern hemispheres that brings the attention of solar energy modelers to the level of errors they may encounter when the impact of longitude (thus, the exact location) is ignored for simplicity, while focus is given to the latitude.


Author(s):  
B. Muruganantham ◽  
R. Gnanadass

Abstract Solar PV Integration in the distribution network has become necessary to overcome the growing demand and to reduce emissions. The large percentage penetration of solar PV in the distribution network has more limitations to maintain the stability of the network. This paper emphasizes the strategy of location and the impact of solar PV integration in an urban distribution feeder. The urban distribution feeder has more service sector loads, having a majority of the demand during the daytime. To locate the solar PV, the diurnal load factor is proposed to maximize the utilization. With the proper location of solar PV in the appropriate nodes with more day demand, solar energy can be used locally without storage. This facilitates the effective utilization of urban distribution infrastructure, creating more network space for further load growth. The power flow and loading impact of solar PV generation are demonstrated on the 15-node Indian urban distribution feeder. Load profiles of various loads in different seasons of the year are normalized and grouped for the accurate analysis. Time series load flow analysis is performed with a variable load pattern to analyze the dynamic performance of the network.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2312
Author(s):  
Marco Pasetti

Battery energy storage systems (BESSs) are increasingly adopted to mitigate the negative effects caused by the intermittent generation of photovoltaic (PV) systems. The majority of commercial BESSs implement the self-consumption, rule-based approach, which aims at storing the excess of PV production, and then reusing it when the power demand of the loads exceeds the PV power generation. Even though this approach proved to be a valid solution to increase the self-consumption of distributed generators, its ability to reduce the power flow uncertainties caused by PV systems is still debatable. To fill this gap, this study aims at answering this question by proposing a dedicated set of key performance indicators (KPIs). These KPIs are used to evaluate the performance of a 13.8 kWp/25.2 kWh Lithium-Ion BESS coupled with a 64 kWp PV system. The results of the study revealed that the impact of the storage system had almost negligible effects on the uncertainty of the net power flows, while showing better results in terms of the reduction of the absolute power ramps, particularly during the BESS charge stages. These results represent an interesting point of discussion by suggesting that different storage control approaches should be investigated.


2021 ◽  
Vol 13 (14) ◽  
pp. 7636
Author(s):  
Khaled M. Alawasa ◽  
Rashid S. AlAbri ◽  
Amer S. Al-Hinai ◽  
Mohammed H. Albadi ◽  
Abdullah H. Al-Badi

For a decade, investments in solar photovoltaic (PV) systems have been increasing exponentially in the Middle East. Broadly speaking, these investments have been facing tremendous challenges due to the harsh weather in this particular part of the world. Dust accumulation is one the challenges that negatively affects the performance of solar PV systems. The overall goal of this paper is to thoroughly investigate the effect of dust accumulation on the energy yield of car park PV systems. With this aim in mind, the paper presents scientific values for further research and opens the horizon for attracting further investments in solar PV systems. This study is based on a real PV system in the Sultanate of Oman and considers different cleaning cycles for 16 months (from 29 July 2018 to 10 November 2019). Furthermore, four different PV groups were assessed, and the system was monitored under different cleaning frequencies. In general, it was found that dust accumulation has a significant impact; under 29-day, 32-day, 72-day, and 98-day cleaning cycles, the average percentages of energy loss due to soiling were 9.5%, 18.2%, 31.13%, and 45.6%, respectively. In addition, the dust effect has a seasonal variation. The study revealed that dust accumulation has a more negative impact during summer than during winter. During summer, the energy losses due to soiling were 8.7% higher than those during winter. The difference was attributed to different environmental conditions, with high humidity and low wind speed being the main factors that worsen the impact of dust during summer. Based on the findings of this research, a monthly cleaning program is highly recommended in the city of Muscat.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2516
Author(s):  
Klemen Deželak ◽  
Peter Bracinik ◽  
Klemen Sredenšek ◽  
Sebastijan Seme

This paper deals with photovoltaic (PV) power plant modeling and its integration into the medium-voltage distribution network. Apart from solar cells, a simulation model includes a boost converter, voltage-oriented controller and LCL filter. The main emphasis is given to the comparison of two optimization methods—particle swarm optimization (PSO) and the Ziegler–Nichols (ZN) tuning method, approaches that are used for the parameters of Proportional-Integral (PI) controllers determination. A PI controller is commonly used because of its performance, but it is limited in its effectiveness if there is a change in the parameters of the system. In our case, the aforementioned change is caused by switching the feeders of the distribution network from an open-loop to a closed-loop arrangement. The simulation results have claimed the superiority of the PSO algorithm, while the classical ZN tuning method is acceptable in a limited area of operation.


Sign in / Sign up

Export Citation Format

Share Document