scholarly journals Investigating the anti-cocaine, anti-nociceptive properties and side effects of MP1104, a novel mixed opioid receptor agonist

2021 ◽  
Author(s):  
◽  
Diana Atigari

<p>Rationale: Drug addiction is a chronic, relapsing disease with great socioeconomic and morbidity costs. There are limited treatments, with no Food and Drug Administration approved pharmacotherapies available for psychostimulant addiction. In addition, the use of prescription opioid medications has reached epidemic proportions in the world. More than 40,000 deaths from prescription opioid overdose was reported in USA alone in the year 2017. There is an urgent need for the development of effective, non-addictive pain medications and addiction treatments. The opioid receptors play an important role in the modulation of pain and addiction. Mu opioid receptor (MOPr) agonists are widely used to treat pain, however, can also induce respiratory depression, tolerance and addiction. In contrast, drugs activating the kappa opioid receptor (KOPr) attenuate the rewarding properties of drugs, hence are promising non-addictive analgesics. However, side effects like aversion, sedation, anxiety and depression limit their clinical utility. Delta opioid receptor (DOPr) agonists have rewarding, anti-nociceptive and anti-depressive properties, but can also cause seizures. We hypothesise that development of mixed opioid receptor ligands may have therapeutic properties with reduced side effects. Therefore, this thesis evaluated MP1104, a potent mixed opioid receptor agonist, with full efficacy at all three receptors and 3- and 13-fold higher binding affinity for KOPr compared to MOPr and DOPr, respectively. MP1104 was evaluated for the ability to modulate cocaine-induced behaviours, the anti-nociceptive effects and side effects.  Methods: Male Sprague-Dawley rats were used to investigate the effects of acute MP1104 treatment on cocaine self-administration and drug seeking behaviour. To determine the mechanism, the modulatory effect of MP1104 on dopamine transporter (DAT) function was assessed using rotating disk electrode voltammetry to measure dopamine uptake in rat dorsal striatum (dStr) and nucleus accumbens (NAc) tissue. Evaluation of side effects included sedation (spontaneous locomotor activity), anxiety (elevated plus maze (EPM)), aversion (conditioned place aversion (CPA)) and depression (forced swim tests (FST)) in rats. The anti-nociceptive effects were measured in the warm-water tail withdrawal assay in rats and male C57BL/6 mice. Acute and chronic administration of MP1104 were evaluated in the paclitaxel-induced neuropathic pain model in mice.  Results: In rats trained to self-administer cocaine, acute MP1104 (0.3 and 1 mg/kg, i.p.) administration reduced cocaine-primed reinstatement of drug seeking behaviour and caused a significant downward shift in the cocaine dose-response curve. The anti-cocaine effects exerted by MP1104 are in part due to increased dopamine uptake by DAT in the NAc, which was KOPr-mediated.  In the warm-water tail withdrawal assay in rats, acute administration of MP1104 (0.3 and 0.6 mg/kg, i.p.) was 4 times longer acting (8 h) than morphine (2 h). These effects were both KOPr and DOPr dependent. In the dose-response tail withdrawal assay, MP1104 was found to be potent in both rats (ED₅₀ = 0.58 mg/kg, s.c.) and mice (ED₅₀ = 0.35 mg/kg, s.c.). In the paclitaxel-induced neuropathic pain model, mice treated with MP1104 showed potent reductions in both mechanical (ED₅₀ = 0.449 mg/kg, s.c.) and cold (ED₅₀ = 0.479 mg/kg, s.c.) allodynia compared to morphine. Following chronic daily administration of the ED₈₀ dose, MP1104 (1.2 mg/kg, i.p.) was more potent than morphine in reducing mechanical and cold allodynia. Surprisingly, MP1104 reversed responding back to baseline (non-disease) levels. The most remarkable finding was that MP1104, unlike morphine did not produce tolerance when administered chronically. When the side effects of MP1104 were evaluated in rats, no significant anxiogenic effects were seen in the EPM, nor pro-depressive effects in the FST, nor aversion in CPA tests in rats. Furthermore, pre-treatment with a DOPr antagonist, led to MP1104 producing aversive effects. This data suggests that the DOPr agonist actions of MP1104 attenuate the KOPr-mediated aversive effects of MP1104. However, at higher doses, MP1104 (1 mg/kg, i.p.) was found to be sedative.   Conclusions: MP1104 exerts potent anti-cocaine properties in self-administration tests. The reduced cocaine reward is at least in part due to the ability of MP1104 to modulate DAT function by increasing dopamine uptake in the NAc. MP1104 is also a potent and long-lasting anti-nociceptive agent in rats. Significantly, when evaluated in a chronic neuropathic pain model, MP1104 was potent with no tolerance to the anti-nociceptive effects observed. Moreover, MP1104 showed fewer side effects with reduced sedative effects and no observed anxiety, aversive, nor pro-depressive effects, unlike pure KOPr agonists.  This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOPr/DOPr agonists as non-addictive pain medications and anti-cocaine pharmacotherapies with fewer side effects.</p>

2021 ◽  
Author(s):  
◽  
Diana Atigari

<p>Rationale: Drug addiction is a chronic, relapsing disease with great socioeconomic and morbidity costs. There are limited treatments, with no Food and Drug Administration approved pharmacotherapies available for psychostimulant addiction. In addition, the use of prescription opioid medications has reached epidemic proportions in the world. More than 40,000 deaths from prescription opioid overdose was reported in USA alone in the year 2017. There is an urgent need for the development of effective, non-addictive pain medications and addiction treatments. The opioid receptors play an important role in the modulation of pain and addiction. Mu opioid receptor (MOPr) agonists are widely used to treat pain, however, can also induce respiratory depression, tolerance and addiction. In contrast, drugs activating the kappa opioid receptor (KOPr) attenuate the rewarding properties of drugs, hence are promising non-addictive analgesics. However, side effects like aversion, sedation, anxiety and depression limit their clinical utility. Delta opioid receptor (DOPr) agonists have rewarding, anti-nociceptive and anti-depressive properties, but can also cause seizures. We hypothesise that development of mixed opioid receptor ligands may have therapeutic properties with reduced side effects. Therefore, this thesis evaluated MP1104, a potent mixed opioid receptor agonist, with full efficacy at all three receptors and 3- and 13-fold higher binding affinity for KOPr compared to MOPr and DOPr, respectively. MP1104 was evaluated for the ability to modulate cocaine-induced behaviours, the anti-nociceptive effects and side effects.  Methods: Male Sprague-Dawley rats were used to investigate the effects of acute MP1104 treatment on cocaine self-administration and drug seeking behaviour. To determine the mechanism, the modulatory effect of MP1104 on dopamine transporter (DAT) function was assessed using rotating disk electrode voltammetry to measure dopamine uptake in rat dorsal striatum (dStr) and nucleus accumbens (NAc) tissue. Evaluation of side effects included sedation (spontaneous locomotor activity), anxiety (elevated plus maze (EPM)), aversion (conditioned place aversion (CPA)) and depression (forced swim tests (FST)) in rats. The anti-nociceptive effects were measured in the warm-water tail withdrawal assay in rats and male C57BL/6 mice. Acute and chronic administration of MP1104 were evaluated in the paclitaxel-induced neuropathic pain model in mice.  Results: In rats trained to self-administer cocaine, acute MP1104 (0.3 and 1 mg/kg, i.p.) administration reduced cocaine-primed reinstatement of drug seeking behaviour and caused a significant downward shift in the cocaine dose-response curve. The anti-cocaine effects exerted by MP1104 are in part due to increased dopamine uptake by DAT in the NAc, which was KOPr-mediated.  In the warm-water tail withdrawal assay in rats, acute administration of MP1104 (0.3 and 0.6 mg/kg, i.p.) was 4 times longer acting (8 h) than morphine (2 h). These effects were both KOPr and DOPr dependent. In the dose-response tail withdrawal assay, MP1104 was found to be potent in both rats (ED₅₀ = 0.58 mg/kg, s.c.) and mice (ED₅₀ = 0.35 mg/kg, s.c.). In the paclitaxel-induced neuropathic pain model, mice treated with MP1104 showed potent reductions in both mechanical (ED₅₀ = 0.449 mg/kg, s.c.) and cold (ED₅₀ = 0.479 mg/kg, s.c.) allodynia compared to morphine. Following chronic daily administration of the ED₈₀ dose, MP1104 (1.2 mg/kg, i.p.) was more potent than morphine in reducing mechanical and cold allodynia. Surprisingly, MP1104 reversed responding back to baseline (non-disease) levels. The most remarkable finding was that MP1104, unlike morphine did not produce tolerance when administered chronically. When the side effects of MP1104 were evaluated in rats, no significant anxiogenic effects were seen in the EPM, nor pro-depressive effects in the FST, nor aversion in CPA tests in rats. Furthermore, pre-treatment with a DOPr antagonist, led to MP1104 producing aversive effects. This data suggests that the DOPr agonist actions of MP1104 attenuate the KOPr-mediated aversive effects of MP1104. However, at higher doses, MP1104 (1 mg/kg, i.p.) was found to be sedative.   Conclusions: MP1104 exerts potent anti-cocaine properties in self-administration tests. The reduced cocaine reward is at least in part due to the ability of MP1104 to modulate DAT function by increasing dopamine uptake in the NAc. MP1104 is also a potent and long-lasting anti-nociceptive agent in rats. Significantly, when evaluated in a chronic neuropathic pain model, MP1104 was potent with no tolerance to the anti-nociceptive effects observed. Moreover, MP1104 showed fewer side effects with reduced sedative effects and no observed anxiety, aversive, nor pro-depressive effects, unlike pure KOPr agonists.  This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOPr/DOPr agonists as non-addictive pain medications and anti-cocaine pharmacotherapies with fewer side effects.</p>


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Yan Dong ◽  
Chong-Yang Li ◽  
Xiao-Min Zhang ◽  
Ya-Nan Liu ◽  
Shuang Yang ◽  
...  

AbstractOur previous research has shown that galanin plays an antinociceptive effect via binding to galanin receptors (GalRs) in nucleus accumbens (NAc). This study focused on the involvement of GalR2 in galanin-induced antinociceptive effect in NAc of neuropathic pain rats. The chronic constriction injury of sciatic nerve (CCI) was used to mimic neuropathic pain model. The hind paw withdrawal latency (HWL) to thermal stimulation and hind paw withdrawal threshold (HWT) to mechanical stimulation were measured as the indicators of pain threshold. The results showed that 14 and 28 days after CCI, the expression of GalR2 was up-regulated in bilateral NAc of rats, and intra-NAc injection of GalR2 antagonist M871 reversed galanin-induced increases in HWL and HWT of CCI rats. Furthermore, intra-NAc injection of GalR2 agonist M1145 induced increases in HWL and HWT at day 14 and day 28 after CCI, which could also be reversed by M871. Finally, we found that M1145-induced antinociceptive effect in NAc of CCI rats was stronger than that in intact rats. These results imply that the GalR2 is activated in the NAc from day 14 to day 28 after CCI and GalR2 is involved in the galanin-induced antinociceptive effect in NAc of CCI rats.


2021 ◽  
Vol 22 (5) ◽  
pp. 2479
Author(s):  
Amir Mohammadzadeh ◽  
Péter P. Lakatos ◽  
Mihály Balogh ◽  
Ferenc Zádor ◽  
Dávid Árpád Karádi ◽  
...  

The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30–60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.


Neuroreport ◽  
2008 ◽  
Vol 19 (8) ◽  
pp. 825-829 ◽  
Author(s):  
Richard Hulse ◽  
David Wynick ◽  
Lucy F. Donaldson

Sign in / Sign up

Export Citation Format

Share Document