Device Applications of Solution Processed MIR Semiconductor Nanocrystal Thin Films

2021 ◽  
Author(s):  
◽  
Matt Cryer

<p>Colloidal semiconductor nanocrystals (NCs) with bandgaps less than 1 eV allow the development of mid wave infrared (MIR) sensitive detectors that exploit the benefits of colloidal materials, primarily bandgap selection and solution deposition. Additionally, the electrical behaviour of these films can be examined for characteristics that can increase the functionality of NC based detectors.  The production of devices that are designed to be competitive as ultra-low-cost, room temperature MIR detectors, operating with photonic, rather than thermal detection is detailed. The evolution of the colloidal synthesis, spray deposition methods, substrate materials and post deposition treatments used here lead to highly robust and high performing devices. These devices demonstrate a “colour” sensitivity down to 300 nm in the MIR (≈10 % of scale), with superior responsivities for this class of device, up to 0.9 AW⁻¹, and competitive specific detectivity up to 8 × 10⁹ Jones at 200 Hz and 300 K. Furthermore, these devices utilise a cheap and robust substrate material that allows operation after deformation up to 45 ° without degradation over many cycles. These devices offer a template for ultra-low-cost MIR detectors with performance that rivals microbolometers but with better measurement speed and spectral sensitivity. As such these devices showcase the key advantages of using colloidal NCs in MIR applications.  Planar and fully air processed thin film devices that demonstrate photo-induced memristive behaviour and can be used as a transistors, photode-tectors or memory devices are investigated. Following long term (60 h) air exposure, unpackaged NC films develop reliable memristive characteristics in tandem with temperature, gate and photoresponse. On/off ratios of more than 50 are achieved and the devices show long term stability, producing repeatable metrics over days of measurement. The on/off behaviour is shown to be dependent on previous charge flow and carrier density, implying memristive rather than switching behaviour. These observations are described within a long term trap filling model. This work represents an advance in the integration of NC films into electronic devices, which may lead to the development of multi-functional electronic components.  Building on the previous work the steps taken to move from a planar device, that works well in controlled conditions, to a multi-pixel sensor that can demonstrate MIR video imaging at room temperature in a noisy environment are shown. This is achieved with a 15 pixel detector that consists only of a polymer substrate and solution patterned NC pixels. This device can detect a 373 K object with the device at 298 K in a noisy environment. This performance is enabled by photogain at 5 V bias that reaches a maximum External Quantum Efficiency (EQE) of 1940 ± 290 % for a pixel with a 3.3 µm bandgap. Through the use of four separate bandgaps it is shown that “multicolour” thermal imaging systems can deliver another layer of information, on top of intensity, to the user. The behaviour of the system is examined under use and it is shown that the photoconductive device behaves as expected with regards to bias, and that trap enabled gain is sensitive to total incident flux, more than the spectral energy distribution of the target. Finally, it is shown that solution patterned QD fabrication methods can deliver electrical reproducibility between pixels that is sufficient to allow an imaging plane of multiple pixels.  The somewhat neglected tin chalcogenide semiconductor nanocrystals are investigated and inverse MIR detection at room temperature is demonstrated with planar, solution and airprocessed PbSnTe and SnTe QD devices. The detection mechanism is shown to be mediated by an interaction between MIR radiation and the vibrational stretches of adsorbed hydroxyl species at the oxdised NC surface. Devices are shown to possess mAW⁻¹ responsivity via a reduction in film conductance due to MIR radiation and, unlike classic MIR photoconductors, are unaffected by visible wavelengths. As such these devices offer the possibility of MIR thermal imaging that has an intrinsic solution to the blinding caused by higher energy light sources.  In summary, it is shown that semiconductor NCs with an all ambient fully solution processed deposition and ligand exchange procedure can be used to create simple, robust and cheap devices that are beginning to demonstrate metrics on par with current commercial thermal detector systems. It is also shown that these devices can under certain circumstances demonstrate novel behaviours that offer the prospects of enhanced or novel functionality.</p>

2021 ◽  
Author(s):  
◽  
Matt Cryer

<p>Colloidal semiconductor nanocrystals (NCs) with bandgaps less than 1 eV allow the development of mid wave infrared (MIR) sensitive detectors that exploit the benefits of colloidal materials, primarily bandgap selection and solution deposition. Additionally, the electrical behaviour of these films can be examined for characteristics that can increase the functionality of NC based detectors.  The production of devices that are designed to be competitive as ultra-low-cost, room temperature MIR detectors, operating with photonic, rather than thermal detection is detailed. The evolution of the colloidal synthesis, spray deposition methods, substrate materials and post deposition treatments used here lead to highly robust and high performing devices. These devices demonstrate a “colour” sensitivity down to 300 nm in the MIR (≈10 % of scale), with superior responsivities for this class of device, up to 0.9 AW⁻¹, and competitive specific detectivity up to 8 × 10⁹ Jones at 200 Hz and 300 K. Furthermore, these devices utilise a cheap and robust substrate material that allows operation after deformation up to 45 ° without degradation over many cycles. These devices offer a template for ultra-low-cost MIR detectors with performance that rivals microbolometers but with better measurement speed and spectral sensitivity. As such these devices showcase the key advantages of using colloidal NCs in MIR applications.  Planar and fully air processed thin film devices that demonstrate photo-induced memristive behaviour and can be used as a transistors, photode-tectors or memory devices are investigated. Following long term (60 h) air exposure, unpackaged NC films develop reliable memristive characteristics in tandem with temperature, gate and photoresponse. On/off ratios of more than 50 are achieved and the devices show long term stability, producing repeatable metrics over days of measurement. The on/off behaviour is shown to be dependent on previous charge flow and carrier density, implying memristive rather than switching behaviour. These observations are described within a long term trap filling model. This work represents an advance in the integration of NC films into electronic devices, which may lead to the development of multi-functional electronic components.  Building on the previous work the steps taken to move from a planar device, that works well in controlled conditions, to a multi-pixel sensor that can demonstrate MIR video imaging at room temperature in a noisy environment are shown. This is achieved with a 15 pixel detector that consists only of a polymer substrate and solution patterned NC pixels. This device can detect a 373 K object with the device at 298 K in a noisy environment. This performance is enabled by photogain at 5 V bias that reaches a maximum External Quantum Efficiency (EQE) of 1940 ± 290 % for a pixel with a 3.3 µm bandgap. Through the use of four separate bandgaps it is shown that “multicolour” thermal imaging systems can deliver another layer of information, on top of intensity, to the user. The behaviour of the system is examined under use and it is shown that the photoconductive device behaves as expected with regards to bias, and that trap enabled gain is sensitive to total incident flux, more than the spectral energy distribution of the target. Finally, it is shown that solution patterned QD fabrication methods can deliver electrical reproducibility between pixels that is sufficient to allow an imaging plane of multiple pixels.  The somewhat neglected tin chalcogenide semiconductor nanocrystals are investigated and inverse MIR detection at room temperature is demonstrated with planar, solution and airprocessed PbSnTe and SnTe QD devices. The detection mechanism is shown to be mediated by an interaction between MIR radiation and the vibrational stretches of adsorbed hydroxyl species at the oxdised NC surface. Devices are shown to possess mAW⁻¹ responsivity via a reduction in film conductance due to MIR radiation and, unlike classic MIR photoconductors, are unaffected by visible wavelengths. As such these devices offer the possibility of MIR thermal imaging that has an intrinsic solution to the blinding caused by higher energy light sources.  In summary, it is shown that semiconductor NCs with an all ambient fully solution processed deposition and ligand exchange procedure can be used to create simple, robust and cheap devices that are beginning to demonstrate metrics on par with current commercial thermal detector systems. It is also shown that these devices can under certain circumstances demonstrate novel behaviours that offer the prospects of enhanced or novel functionality.</p>


2014 ◽  
Vol 246 ◽  
pp. 423-429 ◽  
Author(s):  
Boris Filanovsky ◽  
Eran Granot ◽  
Igor Presman ◽  
Iliya Kuras ◽  
Fernando Patolsky

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5035
Author(s):  
Nikolaos Naziris ◽  
Natassa Pippa ◽  
Costas Demetzos

Lipidic vehicles are novel industrial products, utilized as components for pharmaceutical, cosmeceutical and nutraceutical formulations. The present study concerns a newly invented method to produce lipidic vehicles in the nanoscale that is simple, nontoxic, versatile, time-efficient, low-cost and easy to scale up. The process is a modification of the heating method (MHM) and comprises (i) providing a mixture of an amphiphilic lipid and a charged lipid and/or a fluidity regulator in a liquid medium composed of water and a liquid polyol, (ii) stirring and heating the mixture in two heating steps, wherein the temperature of the second step is higher than the temperature of the first step and (iii) allowing the mixture to cool down to room temperature. The process leads to the self-assembly of nanoparticles of small size and good homogeneity, compared with conventional approaches that require additional size reduction steps. In addition, the incorporation of bioactive molecules, such as drugs, inside the nanoparticles is possible, while lyophilization of the products provides long-term stability. Most importantly, the absence of toxic solvents and the simplicity guarantee the safety and scalability of the process, distinguishing it from most prior art processes to produce lipidic vehicles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2071
Author(s):  
Mingyue Hou ◽  
Zhaohua Zhou ◽  
Ao Xu ◽  
Kening Xiao ◽  
Jiakun Li ◽  
...  

Solution-processed CdTe semiconductor nanocrystals (NCs) have exhibited astonishing potential in fabricating low-cost, low materials consumption and highly efficient photovoltaic devices. However, most of the conventional CdTe NCs reported are synthesized through high temperature microemulsion method with high toxic trioctylphosphine tellurite (TOP-Te) or tributylphosphine tellurite (TBP-Te) as tellurium precursor. These hazardous substances used in the fabrication process of CdTe NCs are drawing them back from further application. Herein, we report a phosphine-free method for synthesizing group II-VI semiconductor NCs with alkyl amine and alkyl acid as ligands. Based on various characterizations like UV-vis absorption (UV), transmission electron microscope (TEM), and X-ray diffraction (XRD), among others, the properties of the as-synthesized CdS, CdSe, and CdTe NCs are determined. High-quality semiconductor NCs with easily controlled size and morphology could be fabricated through this phosphine-free method. To further investigate its potential to industrial application, NCs solar cells with device configuration of ITO/ZnO/CdSe/CdTe/Au and ITO/ZnO/CdS/CdTe/Au are fabricated based on NCs synthesized by this method. By optimizing the device fabrication conditions, the champion device exhibited power conversion efficiency (PCE) of 2.28%. This research paves the way for industrial production of low-cost and environmentally friendly NCs photovoltaic devices.


2019 ◽  
Vol 7 (37) ◽  
pp. 21085-21095 ◽  
Author(s):  
Lei Lei ◽  
Songwang Yang ◽  
Yu Yu ◽  
Ming Li ◽  
Junjie Xie ◽  
...  

A hydrophobic electron transporter is introduced to enhance the moisture stability of perovskite solar cells (PSCs). The calcine-free deposition of carrier transporters contributes to achieving stable, scalable and reproducible PSCs with low cost.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chee Wah Loy ◽  
Khamirul Amin Matori ◽  
Way Foong Lim ◽  
Siegbert Schmid ◽  
Norhazlin Zainuddin ◽  
...  

This paper presents a study of crystallographic evolution of disposed ark clam shell (ACS) after calcination at 400–1400°C which was kept at room temperature under ambient condition in Malaysia during nine months. A better understanding of hydration and recarbonation of ACS powder (≤63 μm) after calcination was discovered by PXRD and FTIR. The research focuses on the crystallographic transformation, biogenic calcite decomposition, and unusual atmospheric aragonite formation in ACS after calcination and atmospheric air exposure. Ex situ PXRD showed calcite present in ACS at ≤900°C. ACS transformed to pyrogenic fcc CaO at ≥800°C after three months. Long term atmospheric air exposure of decarbonized ACS caused nucleation of nonbiogenic aragonite, vaterite, calcite, and portlandite. However, in situ PXRD analysis of ACS at instantaneous temperature without cooling process does not indicate the presence of aragonite, vaterite, and portlandite crystals. FTIR spectra revealed CaO–CO2bond in ACS dissociated with temperature (600–900°C) to form CaO and CO2. Ca–OH bond was also traced in FTIR spectra of ≥700°C. It resulted by hydroadsorption of CaO with H2O in atmospheric air.


2018 ◽  
Author(s):  
Youngjun Cho ◽  
Simon J Julier ◽  
Nadia Bianchi-Berthouze

BACKGROUND A smartphone is a promising tool for daily cardiovascular measurement and mental stress monitoring. A smartphone camera–based photoplethysmography (PPG) and a low-cost thermal camera can be used to create cheap, convenient, and mobile monitoring systems. However, to ensure reliable monitoring results, a person must remain still for several minutes while a measurement is being taken. This is cumbersome and makes its use in real-life situations impractical. OBJECTIVE We proposed a system that combines PPG and thermography with the aim of improving cardiovascular signal quality and detecting stress responses quickly. METHODS Using a smartphone camera with a low-cost thermal camera added on, we built a novel system that continuously and reliably measures 2 different types of cardiovascular events: (1) blood volume pulse and (2) vasoconstriction/dilation-induced temperature changes of the nose tip. 17 participants, involved in stress-inducing mental workload tasks, measured their physiological responses to stressors over a short time period (20 seconds) immediately after each task. Participants reported their perceived stress levels on a 10-cm visual analog scale. For the instant stress inference task, we built novel low-level feature sets representing cardiovascular variability. We then used the automatic feature learning capability of artificial neural networks to improve the mapping between the extracted features and the self-reported ratings. We compared our proposed method with existing hand-engineered features-based machine learning methods. RESULTS First, we found that the measured PPG signals presented high quality cardiac cyclic information (mean pSQI: 0.755; SD 0.068). We also found that the measured thermal changes of the nose tip presented high-quality breathing cyclic information and filtering helped extract vasoconstriction/dilation-induced patterns with fewer respiratory effects (mean pSQI: from 0.714 to 0.157). Second, we found low correlations between the self-reported stress scores and the existing metrics of the cardiovascular signals (ie, heart rate variability and thermal directionality) from short measurements, suggesting they were not very dependent upon one another. Third, we tested the performance of the instant perceived stress inference method. The proposed method achieved significantly higher accuracies than existing precrafted features-based methods. In addition, the 17-fold leave-one-subject-out cross-validation results showed that combining both modalities produced higher accuracy than using PPG or thermal imaging only (PPG+Thermal: 78.33%; PPG: 68.53%; Thermal: 58.82%). The multimodal results are comparable to the state-of-the-art stress recognition methods that require long-term measurements. Finally, we explored effects of different data labeling strategies on the sensitivity of our inference methods. Our results showed the need for separation of and normalization between individual data. CONCLUSIONS The results demonstrate the feasibility of using smartphone-based imaging for instant stress detection. Given that this approach does not need long-term measurements requiring attention and reduced mobility, we believe it is more suitable for mobile mental health care solutions in the wild.


1994 ◽  
Vol 362 ◽  
Author(s):  
M. A. Duggan ◽  
M. H. Loreito ◽  
R. E. Smallman

AbstractTi6AI4V rings have been centrifugally spray deposited with the long term aim of producing sheet which can be superplastically formed. Spray deposition has been carried out under vacuum and under an argon atmosphere in order to assess the significance of gas entrapment during spray forming. Some samples have been HIPped and others have been used for hot rolling trials after spray deposition and the microstructures of these differently treated samples compared. Some preliminary measurements of the room temperature tensile properties have also been made.The results are briefly discussed in terms of the advantages of using a vacuum spray forming route and in terms of the properties of the spray-formed and HIPped samples.


10.2196/10140 ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. e10140 ◽  
Author(s):  
Youngjun Cho ◽  
Simon J Julier ◽  
Nadia Bianchi-Berthouze

Background A smartphone is a promising tool for daily cardiovascular measurement and mental stress monitoring. A smartphone camera–based photoplethysmography (PPG) and a low-cost thermal camera can be used to create cheap, convenient, and mobile monitoring systems. However, to ensure reliable monitoring results, a person must remain still for several minutes while a measurement is being taken. This is cumbersome and makes its use in real-life situations impractical. Objective We proposed a system that combines PPG and thermography with the aim of improving cardiovascular signal quality and detecting stress responses quickly. Methods Using a smartphone camera with a low-cost thermal camera added on, we built a novel system that continuously and reliably measures 2 different types of cardiovascular events: (1) blood volume pulse and (2) vasoconstriction/dilation-induced temperature changes of the nose tip. 17 participants, involved in stress-inducing mental workload tasks, measured their physiological responses to stressors over a short time period (20 seconds) immediately after each task. Participants reported their perceived stress levels on a 10-cm visual analog scale. For the instant stress inference task, we built novel low-level feature sets representing cardiovascular variability. We then used the automatic feature learning capability of artificial neural networks to improve the mapping between the extracted features and the self-reported ratings. We compared our proposed method with existing hand-engineered features-based machine learning methods. Results First, we found that the measured PPG signals presented high quality cardiac cyclic information (mean pSQI: 0.755; SD 0.068). We also found that the measured thermal changes of the nose tip presented high-quality breathing cyclic information and filtering helped extract vasoconstriction/dilation-induced patterns with fewer respiratory effects (mean pSQI: from 0.714 to 0.157). Second, we found low correlations between the self-reported stress scores and the existing metrics of the cardiovascular signals (ie, heart rate variability and thermal directionality) from short measurements, suggesting they were not very dependent upon one another. Third, we tested the performance of the instant perceived stress inference method. The proposed method achieved significantly higher accuracies than existing precrafted features-based methods. In addition, the 17-fold leave-one-subject-out cross-validation results showed that combining both modalities produced higher accuracy than using PPG or thermal imaging only (PPG+Thermal: 78.33%; PPG: 68.53%; Thermal: 58.82%). The multimodal results are comparable to the state-of-the-art stress recognition methods that require long-term measurements. Finally, we explored effects of different data labeling strategies on the sensitivity of our inference methods. Our results showed the need for separation of and normalization between individual data. Conclusions The results demonstrate the feasibility of using smartphone-based imaging for instant stress detection. Given that this approach does not need long-term measurements requiring attention and reduced mobility, we believe it is more suitable for mobile mental health care solutions in the wild.


2013 ◽  
Vol 1546 ◽  
Author(s):  
Menglu Li ◽  
Weng Leong Chan ◽  
Hannah C. Gardner

ABSTRACTSemiconductor nanocrystals or quantum dots are becoming increasingly popular in research fields as wide ranging as cancer therapies, solar energy and disease detection. Colloidal synthesis provides a low-cost method of producing high quality quantum dots with narrow size distributions. The controllable nature of colloidal synthesis allows researchers to design the size, shape and surface functionalization of the resulting particles.Here we investigate a simple low temperature method to produce CdSe quantum dots. The quantum dots were grown in solution by dissolving the CdO precursor in a mixture of macadamia oil, and oleic acid. Elemental Se was heated separately before the two mixtures were combined under an inert atmosphere. The injection temperature, reaction temperature and oleic acid concentration were all varied.Optical absorption and photoluminescence spectroscopies showed the size of the quantum dots increased with time, temperature and oleic acid concentration. Dynamic light scattering has shown the hydrodynamic particle size to range from 7 to 22nm and the samples for up to 6 months.


Sign in / Sign up

Export Citation Format

Share Document