scholarly journals Towards the development of a chemical lure to improve the management of invading rat populations

2021 ◽  
Author(s):  
◽  
Grace Laura Paske

<p>Introduced species, such as Rattus norvegicus and Rattus rattus,have contributed to the extinction of many native animals and plants in New Zealand(NZ). Current strategies exist to monitor, manage and eradicate pest species. However, these haven’t always been completely successful and tools to detect small or invading densities remain to be developed. One possible new method to address this problem is the application of chemical attractants (lures). Recently, a major urinary protein (MUP) has been shown in male miceto act as a sexual attractant. MUPs modulate the release of volatile attractants and have potential to act as attractants themselves. Our aim was to determine if a similar MUP(s) and associated volatiles are present in the urine of rats, with the prospect of creating a chemical lure to use in rat detection and eradication. Using Gas Chromatography/Mass Spectrometry, potential volatiles in rat urine have been identified. Analysis of rat urine by gel electrophoresis has shown MUPs present in both sexes. A 22.4 kDa MUP in Rattus norvegicushas been synthesised and expressed in E.coliusing recombinant DNA technology. Preliminary steps have been made towards the production of a MUP based on ship rat DNA sequence. Future behavioral trials are needed to investigate whether the synthesised protein, in the presence or absence of the urinary-derived volatiles, is a sexual attractant.</p>

2021 ◽  
Author(s):  
◽  
Grace Laura Paske

<p>Introduced species, such as Rattus norvegicus and Rattus rattus,have contributed to the extinction of many native animals and plants in New Zealand(NZ). Current strategies exist to monitor, manage and eradicate pest species. However, these haven’t always been completely successful and tools to detect small or invading densities remain to be developed. One possible new method to address this problem is the application of chemical attractants (lures). Recently, a major urinary protein (MUP) has been shown in male miceto act as a sexual attractant. MUPs modulate the release of volatile attractants and have potential to act as attractants themselves. Our aim was to determine if a similar MUP(s) and associated volatiles are present in the urine of rats, with the prospect of creating a chemical lure to use in rat detection and eradication. Using Gas Chromatography/Mass Spectrometry, potential volatiles in rat urine have been identified. Analysis of rat urine by gel electrophoresis has shown MUPs present in both sexes. A 22.4 kDa MUP in Rattus norvegicushas been synthesised and expressed in E.coliusing recombinant DNA technology. Preliminary steps have been made towards the production of a MUP based on ship rat DNA sequence. Future behavioral trials are needed to investigate whether the synthesised protein, in the presence or absence of the urinary-derived volatiles, is a sexual attractant.</p>


2021 ◽  
Author(s):  
Henry Mackenzie

<p><b>The ship rat (Rattus rattus) and Norway rat (Rattus norvegicus) are prolific pest species with a near- global distribution. Their spread has had serious public health repercussions as carriers of disease and by causing considerable agricultural losses. They are also invasive to many native ecosystems, degrading ecosystem processes, and preying upon native species, resulting in significant losses to biodiversity. </b></p><p>This study aims to guide more effective rat management strategies through an increased understanding of the spatial ecology of rats in an urban environment. Three separate studies were conducted, all located in Wellington, New Zealand: </p><p>1) A radio-telemetry study looked at the home range and spatial behavior of 10 urban ship rats. Results showed comparatively small home ranges (0.01 - 0.45 ha at 100% minimum convex polygons) with maximum linear distances within a home range of 19-74m. There was significant spatial overlap between home ranges– up to 90% (between two adjacent home ranges); co-nesting behavior between both sexes; frequent diurnal activity amongst ship rats (9 of 10 rats); and two longer distance dispersal events (~120m) by ship rats. Implications for rat management include: a need for tighter spacing of devices in urban habitats for control and detection of survivors, potentially every 20-25m if eradication is the goal. </p><p>2) A capture mark re-sight study to estimate the minimum density of ship rats in an 0.63 ha urban bush fragment. A total of five rats were live caught in cage traps and uniquely marked before release. An additional eight wild rats were uniquely identified on cameras based on distinctive features of their appearance. A conservative Lincoln-Petersen estimate was used to estimate the number of rats within the bush fragment: this produced an estimate of 14.6 rats with 95% confidence intervals [7.69-55.6], which translates to a density of 23.2 rats/ha [12.2-88.25]. These densities are significantly higher than those found in most mainland studies and more comparable to those in island habitats. This could be because ship rats are subsidizing their diet with human-derived foods, although this was not confirmed here. </p><p>3) A detection probability study investigated the sensitivity of three devices (wax tag, chew card and bait station) to ship rat presence and examining age-related differences in detection. The bait station was found to have the highest detection probability (0.5 detections/sighting) followed by the wax tag (0.44 detections/sighting) and chew card (0.37 detections/sighting) although results were based on data retrieved from a low sample size of devices (n=2 of each type). The bait station showed a sharp difference between the adult (0.1 detections/sighting) and adolescent populations (0.89 detections/sighting) detection probability. Furthermore, this difference in detection probability was found, although less pronounced, in both the wax tag and chew card. Implications for rat management include: a recommendation that wax tags be used as the primary means of ship rat monitoring; a need for further behavioral studies looking at detection probabilities across a range of kill and monitoring devices so that the most effective ones can be identified; and the development and testing of devices that are attractive to adult rats that may have become “trap shy”. </p><p>These three studies together provide useful insights into urban rat ecology with implications for pest management. However, a more comprehensive study with larger sample sizes is recommended to fully substantiate this work. </p>


2021 ◽  
Author(s):  
Henry Mackenzie

<p><b>The ship rat (Rattus rattus) and Norway rat (Rattus norvegicus) are prolific pest species with a near- global distribution. Their spread has had serious public health repercussions as carriers of disease and by causing considerable agricultural losses. They are also invasive to many native ecosystems, degrading ecosystem processes, and preying upon native species, resulting in significant losses to biodiversity. </b></p><p>This study aims to guide more effective rat management strategies through an increased understanding of the spatial ecology of rats in an urban environment. Three separate studies were conducted, all located in Wellington, New Zealand: </p><p>1) A radio-telemetry study looked at the home range and spatial behavior of 10 urban ship rats. Results showed comparatively small home ranges (0.01 - 0.45 ha at 100% minimum convex polygons) with maximum linear distances within a home range of 19-74m. There was significant spatial overlap between home ranges– up to 90% (between two adjacent home ranges); co-nesting behavior between both sexes; frequent diurnal activity amongst ship rats (9 of 10 rats); and two longer distance dispersal events (~120m) by ship rats. Implications for rat management include: a need for tighter spacing of devices in urban habitats for control and detection of survivors, potentially every 20-25m if eradication is the goal. </p><p>2) A capture mark re-sight study to estimate the minimum density of ship rats in an 0.63 ha urban bush fragment. A total of five rats were live caught in cage traps and uniquely marked before release. An additional eight wild rats were uniquely identified on cameras based on distinctive features of their appearance. A conservative Lincoln-Petersen estimate was used to estimate the number of rats within the bush fragment: this produced an estimate of 14.6 rats with 95% confidence intervals [7.69-55.6], which translates to a density of 23.2 rats/ha [12.2-88.25]. These densities are significantly higher than those found in most mainland studies and more comparable to those in island habitats. This could be because ship rats are subsidizing their diet with human-derived foods, although this was not confirmed here. </p><p>3) A detection probability study investigated the sensitivity of three devices (wax tag, chew card and bait station) to ship rat presence and examining age-related differences in detection. The bait station was found to have the highest detection probability (0.5 detections/sighting) followed by the wax tag (0.44 detections/sighting) and chew card (0.37 detections/sighting) although results were based on data retrieved from a low sample size of devices (n=2 of each type). The bait station showed a sharp difference between the adult (0.1 detections/sighting) and adolescent populations (0.89 detections/sighting) detection probability. Furthermore, this difference in detection probability was found, although less pronounced, in both the wax tag and chew card. Implications for rat management include: a recommendation that wax tags be used as the primary means of ship rat monitoring; a need for further behavioral studies looking at detection probabilities across a range of kill and monitoring devices so that the most effective ones can be identified; and the development and testing of devices that are attractive to adult rats that may have become “trap shy”. </p><p>These three studies together provide useful insights into urban rat ecology with implications for pest management. However, a more comprehensive study with larger sample sizes is recommended to fully substantiate this work. </p>


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


2021 ◽  
Vol 11 (12) ◽  
pp. 5352
Author(s):  
Ana Margarida Pereira ◽  
Diana Gomes ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
...  

Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.


1992 ◽  
Vol 38 (Special) ◽  
pp. 263-266
Author(s):  
O. IFUKU ◽  
S. HAZE ◽  
J. KISHIMOTO ◽  
M. YANAGI

Sign in / Sign up

Export Citation Format

Share Document