scholarly journals A Novel Framework for Constructing Sport-Based Rating Systems

2021 ◽  
Author(s):  
◽  
Ankit Patel

<p>This doctoral thesis examines the multivariate nature of sporting performances, expressed as performance on context specific tasks, to develop a novel framework for constructing sport-based rating systems, also referred to as scoring models. The intent of this framework is to produce reliable, robust, intuitive, and transparent ratings, regarded as meaningful, for performance prevalent in the sport player and team evaluation environment. In this thesis, Bracewell’s (2003) definition of a rating as an elegant form of dimension reduction is extended. Specifically, ratings are an elegant and excessive form of dimension reduction whereby a single numerical value provides an objective interpretation of performance.  The data, provided by numerous vendors, is a summary of actions and performances completed by an individual during the evaluation period. A literature review of rating systems to measure performance, revealed a set of common methodologies, which were applied to produce a set of rating systems that were used as pilot studies to garner a set of learnings and limitations surrounding the current literature.  By reviewing rating methodologies and developing rating systems a set of limitations and communalities surrounding the current literature were identified and used to develop a novel framework for constructing sport-based rating systems which output measures of both team and player-level performance. The proposed framework adopts a multi-objective ensembling strategy and implements five key communalities present within many rating methodologies. These communalities are the application of 1) dimension reduction and feature selection techniques, 2) feature engineering tasks, 3) a multi-objective framework, 4) time-based variables and 5) an ensembling procedure to produce an overall rating.  An ensemble approach is adopted because it assumed that sporting performances are a function of the significant traits affecting performance. Therefore, performance is defined as performance=f(〖trait〗_1,…,〖trait〗_n). Moreover, the framework is a form of model stacking where information from multiple models is combined to generate a more informative model. Rating systems built using this approach provide a meaningful quantitative interpretation performance during an evaluation period. These ratings measure the quality of performance during a specific time-interval, known as the evaluation period.  The framework introduces a methodical approach for constructing rating systems within the sporting domain, which produce meaningful ratings. Meaningful ratings must 1) yield good performance when data is drawn from a wide range of probability distributions that are largely unaffected by outliers, small departures from model assumptions and small sample sizes (robust), 2) be accurate and produce highly informative predictions which are well-calibrated and sharp (reliable), 3) be interpretable and easy to communicate and (transparent), and 4) relate to real-world observable outcomes (intuitive).  The framework is developed to construct meaningful rating systems within the sporting industry to evaluate team and player performances. The approach was tested and validated by constructing both team and individual player-based rating systems within the cricketing context. The results of these systems were found to be meaningful, in that, they produced reliable, robust, transparent, and intuitive ratings. This ratings framework is not restricted within the sport of cricket to evaluate players and teams’ performances and is applicable in any sporting code where a summary of multivariate data is necessary to understand performance.  Common model evaluation metrics were found to be limited and lacked applicability when evaluating the effectiveness of meaningful ratings, therefore a novel evaluation metric was developed. The constructed metric applies a distance and magnitude-based metrics derived from the spherical scoring rule methodology. The distance and magnitude-based spherical (DMS) metric applies an analytical hierarchy process to assess the effectiveness of meaningful sport-based ratings and accounts for forecasting difficulty on a time basis. The DMS performance metric quantifies elements of the decision-making process by 1) evaluating the distance between ratings reported by the modeller and the actual outcome or the modellers ‘true’ beliefs, 2) providing an indication of “good” ratings, 3) accounting for the context and the forecasting difficulty to which the ratings are being applied, and 4) capturing the introduction of any subjective human bias within sport-based rating systems. The DMS metric is shown to outperform conventional model evaluation metrics such as the log-loss, in specific sporting scenarios of varying difficulty.</p>

2021 ◽  
Author(s):  
◽  
Ankit Patel

<p>This doctoral thesis examines the multivariate nature of sporting performances, expressed as performance on context specific tasks, to develop a novel framework for constructing sport-based rating systems, also referred to as scoring models. The intent of this framework is to produce reliable, robust, intuitive, and transparent ratings, regarded as meaningful, for performance prevalent in the sport player and team evaluation environment. In this thesis, Bracewell’s (2003) definition of a rating as an elegant form of dimension reduction is extended. Specifically, ratings are an elegant and excessive form of dimension reduction whereby a single numerical value provides an objective interpretation of performance.  The data, provided by numerous vendors, is a summary of actions and performances completed by an individual during the evaluation period. A literature review of rating systems to measure performance, revealed a set of common methodologies, which were applied to produce a set of rating systems that were used as pilot studies to garner a set of learnings and limitations surrounding the current literature.  By reviewing rating methodologies and developing rating systems a set of limitations and communalities surrounding the current literature were identified and used to develop a novel framework for constructing sport-based rating systems which output measures of both team and player-level performance. The proposed framework adopts a multi-objective ensembling strategy and implements five key communalities present within many rating methodologies. These communalities are the application of 1) dimension reduction and feature selection techniques, 2) feature engineering tasks, 3) a multi-objective framework, 4) time-based variables and 5) an ensembling procedure to produce an overall rating.  An ensemble approach is adopted because it assumed that sporting performances are a function of the significant traits affecting performance. Therefore, performance is defined as performance=f(〖trait〗_1,…,〖trait〗_n). Moreover, the framework is a form of model stacking where information from multiple models is combined to generate a more informative model. Rating systems built using this approach provide a meaningful quantitative interpretation performance during an evaluation period. These ratings measure the quality of performance during a specific time-interval, known as the evaluation period.  The framework introduces a methodical approach for constructing rating systems within the sporting domain, which produce meaningful ratings. Meaningful ratings must 1) yield good performance when data is drawn from a wide range of probability distributions that are largely unaffected by outliers, small departures from model assumptions and small sample sizes (robust), 2) be accurate and produce highly informative predictions which are well-calibrated and sharp (reliable), 3) be interpretable and easy to communicate and (transparent), and 4) relate to real-world observable outcomes (intuitive).  The framework is developed to construct meaningful rating systems within the sporting industry to evaluate team and player performances. The approach was tested and validated by constructing both team and individual player-based rating systems within the cricketing context. The results of these systems were found to be meaningful, in that, they produced reliable, robust, transparent, and intuitive ratings. This ratings framework is not restricted within the sport of cricket to evaluate players and teams’ performances and is applicable in any sporting code where a summary of multivariate data is necessary to understand performance.  Common model evaluation metrics were found to be limited and lacked applicability when evaluating the effectiveness of meaningful ratings, therefore a novel evaluation metric was developed. The constructed metric applies a distance and magnitude-based metrics derived from the spherical scoring rule methodology. The distance and magnitude-based spherical (DMS) metric applies an analytical hierarchy process to assess the effectiveness of meaningful sport-based ratings and accounts for forecasting difficulty on a time basis. The DMS performance metric quantifies elements of the decision-making process by 1) evaluating the distance between ratings reported by the modeller and the actual outcome or the modellers ‘true’ beliefs, 2) providing an indication of “good” ratings, 3) accounting for the context and the forecasting difficulty to which the ratings are being applied, and 4) capturing the introduction of any subjective human bias within sport-based rating systems. The DMS metric is shown to outperform conventional model evaluation metrics such as the log-loss, in specific sporting scenarios of varying difficulty.</p>


2019 ◽  
pp. 40-46 ◽  
Author(s):  
V.V. Savchenko ◽  
A.V. Savchenko

We consider the task of automated quality control of sound recordings containing voice samples of individuals. It is shown that in this task the most acute is the small sample size. In order to overcome this problem, we propose the novel method of acoustic measurements based on relative stability of the pitch frequency within a voice sample of short duration. An example of its practical implementation using aninter-periodic accumulation of a speech signal is considered. An experimental study with specially developed software provides statistical estimates of the effectiveness of the proposed method in noisy environments. It is shown that this method rejects the audio recording as unsuitable for a voice biometric identification with a probability of 0,95 or more for a signal to noise ratio below 15 dB. The obtained results are intended for use in the development of new and modifying existing systems of collecting and automated quality control of biometric personal data. The article is intended for a wide range of specialists in the field of acoustic measurements and digital processing of speech signals, as well as for practitioners who organize the work of authorized organizations in preparing for registration samples of biometric personal data.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Paleobiology ◽  
2017 ◽  
Vol 43 (4) ◽  
pp. 550-568 ◽  
Author(s):  
Michał Zatoń ◽  
Tomasz Borszcz ◽  
Michał Rakociński

AbstractIn this study we focused on the dynamics of encrusting assemblages preserved on brachiopod hosts collected from upper Frasnian and lower Famennian deposits of the Central Devonian Field, Russia. Because the encrusted brachiopods come from deposits bracketing the Frasnian/Famennian (F/F) boundary, the results also shed some light on ecological differences in encrusting communities before and after the Frasnian–Famennian (F-F) event. To explore the diversity dynamics of encrusting assemblages, we analyzed more than 1300 brachiopod valves (substrates) from two localities. Taxon accumulation plots and shareholder quorum subsampling (SQS) routines indicated that a reasonably small sample of brachiopod host valves (n=50) is sufficient to capture the majority of the encrusting genera recorded at a given site. The richness of encrusters per substrate declined simultaneously with the number of encrusting taxa in the lower Famennian, accompanied by a decrease in epibiont abundance, with a comparable decrease in mean encrustation intensity (percentage of bioclasts encrusted by one or more epibionts). Epibiont abundance and occupancy roughly mirror each other. Strikingly, few ecological characteristics are correlated with substrate size, possibly reflecting random settlement of larvae. Evenness, which is negatively correlated with substrate size, shows greater within-stage variability among samples than between Frasnian and Famennian intervals and may indicate the instability of early Famennian biocenoses following the faunal turnover. The occurrence distribution of encrusters points to nonrandom associations and exclusions among several encrusting taxa. However, abundance and occupancy of microconchids remained relatively stable throughout the sampled time interval. The notable decline in abundance (~60%) and relatively minor decline in diversity (~30%) suggest jointly that encrusting communities experienced ecological collapse rather than a major mass extinction event. The differences between the upper Frasnian and lower Famennian encrusting assemblages may thus record a turnover associated with the F-F event.


Parasitology ◽  
2005 ◽  
Vol 131 (3) ◽  
pp. 393-401 ◽  
Author(s):  
S. GABA ◽  
V. GINOT ◽  
J. CABARET

Macroparasites are almost always aggregated across their host populations, hence the Negative Binomial Distribution (NBD) with its exponent parameter k is widely used for modelling, quantifying or analysing parasite distributions. However, many studies have pointed out some drawbacks in the use of the NBD, with respect to the sensitivity of k to the mean number of parasites per host or the under-representation of the heavily infected hosts in the estimate of k. In this study, we compare the fit of the NBD with 4 other widely used distributions on observed parasitic gastrointestinal nematode distributions in their sheep host populations (11 datasets). Distributions were fitted to observed data using maximum likelihood estimator and the best fits were selected using the Akaike's Information Criterion (AIC). A simulation study was also conducted in order to assess the possible bias in parameter estimations especially in the case of small sample sizes. We found that the NBD is seldom the best fit for gastrointestinal nematode distributions. The Weibull distribution was clearly more appropriate over a very wide range of degrees of aggregation, mainly because it was more flexible in fitting the heavily infected hosts. Moreover, the Weibull distribution estimates are less sensitive to sample size. Thus, when possible, we suggest to carefully check on observed data if the NBD is appropriate before conducting any further analysis on parasite distributions.


2021 ◽  
Author(s):  
Zhanyuan Yin ◽  
Leif Zinn-Brooks

Abstract Ball-rolling dung beetles shape a portion of dung into a ball and roll it away from the dung pile for later burial and consumption. These beetles perform dances (rotations and pauses) atop their dung balls in order to choose an initial rolling direction and to correct their rolling direction (reorient). Previous mathematical modeling showed that dung beetles can use reorientation to move away from the dung pile more efficiently. In this work, we study if reorientation can help beetles avoid competition (i.e., avoid having their dung balls captured), and if so, under what circumstances? This is investigated by implementing a model with two different type of beetles, a roller with a dung ball and a searcher which seeks to capture that dung ball. We show that reorientation can help rollers avoid searchers in a wide range of conditions, but that there are some circumstances in which rolling without reorienting can be a beetle's optimal strategy. We also show that rollers can minimize the probability that their dung ball is captured without making precise measurements of the time interval between dances or the angular deviation for dances.


Author(s):  
Marianna Rita Stancampiano ◽  
Kentaro Suzuki ◽  
Stuart O’Toole ◽  
Gianni Russo ◽  
Gen Yamada ◽  
...  

Abstract In the newborn, penile length is determined by a number of androgen dependent and independent factors. The current literature suggests that there are inter-racial differences in stretched penile length in the newborn and although congenital micropenis should be defined as a stretched penile length of less than 2.5SDS of the mean for the corresponding population and gestation, a pragmatic approach would be to evaluate all boys with a stretched penile length below 2 cm, as congenital micropenis can be a marker for a wide range of endocrine conditions. However, it remains unclear as to whether the state of micropenis, itself, is associated with any long-term consequences. There is a lack of systematic studies comparing the impact of different therapeutic options on long-term outcomes, in terms of genital appearance, quality of life and sexual satisfaction. To date, research has been hampered by a small sample size and inclusion of a wide range of heterogeneous diagnoses; for these reasons, condition specific outcomes have been difficult to compare between studies. Lastly, there is a need for a greater collaborative effort in collecting standardized data so that all real-world or experimental interventions performed at an early age can be studied systematically into adulthood.


Author(s):  
Tatyana Petrovna Budyakova ◽  
Galina Viktorovna Baturkina

The subject of this research is the question of balance in application of quantitative and qualitative methods of research in studying the problems of inclusive education and personality with special educational needs. The goal is to demonstrate that the use of qualitative methods gives objective results even on the small sample of persons under test. The novelty consists in proving the fact that qualitative methods of research have substantial priority in examination of inclusive problems of inclusive personality. The conducted empirical research illustrated that it is possible to effectively identify coping strategies for the students with limited health conditions as well as normotypical, using the autobiographical method on the small sample of persons under test. Analysis of the problems of inclusive education oriented towards considering inclusive needs of the students with disabilities can be efficiently realized using the methods that do not suggest studying the large array of information and wide range of participants of the research. The absence of quantitative data processing in qualitative research of inclusive education is not considered a shortcoming of such research. &nbsp;


2006 ◽  
Vol 21 (8) ◽  
pp. 551-562 ◽  
Author(s):  
Thomas A. Pagonis ◽  
Nikiforos V. Angelopoulos ◽  
George N. Koukoulis ◽  
Christos S. Hadjichristodoulou

AbstractObjectiveThe objective of our study was to evaluate the psychological consequences of real-world AAS use in athletes abusing such agents, in comparison with a placebo and control group of comparable athletes, while correlating the severity of abuse with the side effects observed. The hypothesis tested by the study was that the use of AAS induces a wide range of psychological side effects whose impact and emergence is dependent upon the severity of the abuse.DesignThe study includes a substantial group of AAS abusing athletes and two more groups demographically similar to the first, one composed of athletes not using any substance and a placebo group. All athletes were stratified according to the severity of AAS abuse. Psychometric instruments were applied to all athletes in specific time intervals, dependent to the AAS abusers' regimens, providing us with a final psychological profile that was to be compared to the pre-study profile. All results were comparable (within and between groups) for statistically significant differences and correlated to the severity of the abuse. Homogeneity of all groups was safeguarded by random doping controls, monitoring of drug levels and analysis of all self obtained drugs by method of liquid chromatography/mass spectrometry. All athletes were provided with a common exercise and dietary regime, so common training and nutritional conditions were achieved.MethodsWe studied a cohort of 320 body-building, amateur and recreational athletes, of whom 160 were active users of AAS (group C), 80 users administering placebo drugs (group B) and 80 not abusing any substance (Group A). Group C athletes were stratified according to AAS abuse parameters, thus providing us with three subgroups of “light, medium and heavy abuse”. Athletes of groups A and B were included in a “no abuse” subgroup. The psychometric instruments used were the Symptoms Check List-90 (SCL-90) and the Hostility and Direction of Hostility Questionnaire (HDHQ). The psychometric evaluations took place within a time interval of 13 months. Statistical analysis was performed by using the Mann–Whitney/Wilcoxon two-sample non-parametric test (Kruskal–Wallis test for two groups) for data that were not normally distributed and Linear regression analysis was used to ascertain the correlation between severity of use and escalation of side effects.ResultsThe study showed a statistically significant increase in all psychometric subscales recorded in group C, and no statistically significant difference in group C and A. There was a significant increase in the scorings of group C for all subscales of SCL-90 and HDHQ. Correlation of abuse severity and side effects showed that there was a statistical significant increase in Δ values of all SCL-90 and HDHQ subscales that escalated from light abuse to medium and heavy abuse/consumption patterns.ConclusionsThe results of the study suggest that the wide range of psychiatric side effects induced by the use of AAS is correlated to the severity of abuse and the force of these side effects intensifies as the abuse escalates.


Author(s):  
J. ZAJACZKOWSKI ◽  
B. VERMA

This paper presents a novel compositional method for finding fuzzy rules in a three-layered hierarchical fuzzy structure. The proposed method incorporates a multi-objective evolutionary algorithm and a large set of initial conditions, including dynamical conditions of the system under investigation. The proposed method is focused on handling the large set of initial conditions by a multi-objective evolutionary algorithm and it can be applied to a wide range of dynamical control systems in robotics. The method has been evaluated on a dynamical system such as the inverted pendulum. The experimental results and analysis showed that the proposed method is much better than the existing methods such as amalgamation and single objective evolutionary algorithm based methods.


Sign in / Sign up

Export Citation Format

Share Document