scholarly journals Research on Key Technology of Real-time Video Transmission Based on Mobile Terminal

1970 ◽  
Vol 1 (2) ◽  
Author(s):  
Cao Pengfei

In order to solve the problems existing in real-time video transmission of mobile terminals, this paper proposes the encapsulation method which is suitable for H.263 and H.264 video coding, and re- duces the extra waste of real-time transmission proto- col packets and to improve the transmission efficien- cy of the video. Experimental results show that the peak signal to noise ratio (PSNR) in H.263 and H.264 video coding mode is above 30 dB at the lowest frame rate and resolution, and the minimum requirement of video transmission has been satisfied. Rate of 24 Hz, the two encoding PSNR are more than 40 dB, videotransmission quality ideal. In addition, the two packet loss rate of about10%maximum, themaximumdelay of 400 ms or less, have reached the requirements of real-time videotransmission.

Author(s):  
Praveen Kumar ◽  
Amit Pande ◽  
Ankush Mittal ◽  
Abhisek Mudgal

Video coding and analysis for low power and low bandwidth multimedia applications has always been a great challenge. The limited computational resources on ubiquitous multimedia devices like cameras along with low and varying bandwidth over wireless network lead to serious bottlenecks in delivering real-time streaming of videos for such applications. This work presents a Content-based Network-adaptive Video-transmission (CbNaVt) framework which can waive off the requirements of low bandwidth. This is done by transmitting important content only to the end user. The framework is illustrated with the example of video streaming in the context of remote laboratory setup. A framework for distributed processing using mobile agents is discussed with the example of Distributed Video Surveillance (DVS). In this regard, the increased computational costs due to video processing tasks like object segmentation and tracking are shared by the cameras and a local base station called as Processing Proxy Server (PPS).However, in a distributed scenario like traffic surveillance, where moving objects is tracked using multiple cameras, the processing tasks needs to be dynamically distributed. This is done intelligently using mobile agents by migrating from one PPS to another for tracking an individual case object and transmitting required information to the end users. Although the authors propose a specific implementation for CbNaVt and DVS systems, the general ideas in design of such systems exemplify the way information can be intelligently transmitted in any ubiquitous multimedia applications along with the use of mobile agents for real-time processing and retrieval of video signal.


2012 ◽  
Vol 241-244 ◽  
pp. 2354-2361
Author(s):  
Ling Song ◽  
Tao Shen Li ◽  
Yan Chen

Real-time video transmission demands tremendous bandwidth, throughput and strict delay. For transmitting real-time video in the multi-interface multi-channel Ad hoc, firstly, we applied multi-interface multi-channel extension methods to the AOMDV (Ad-hoc On-demand Multipath Distance Vector) routing protocol, and improved extant channel switching algorithm, called MIMC-AOMDV (Multi-Interface Multi-Channel AOMDV) routing protocol. Secondly, we proposed video streaming delay QoS(Quality of Service) constraint and link-quality metrics, which used the multi interface queue’s total used length to get QMMIMC-AOMDV (Quality metric MIMC -AOMDV) routing protocol. The simulations show that the proposed QMMIMC-AOMDV can reduce the frame delay effectively and raise frame decodable rate and peak signal to noise ratio (PSNR), it is more suitable for real-time video streams.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Rupali B. Patil ◽  
K. D. Kulat ◽  
A. S. Gandhi

Cognitive radio is a budding approach which helps to address the imminent spectrum crisis by dynamic spectrum allocation and support the increased data traffic with an intelligent mechanism of Software Defined Radio (SDR). SDR avoid the frequent modifications in the hardware structure with the use of software defined protocols. The main novelty of the paper is an effective implementation of CR using energy based spectrum sensing method which is done on GNU radio for real time transmission of video as a primary user. From evaluation results, one can see that the proposed system can indicate the frequency band occupancy by setting the detection output. Detection output changes to one with start of video transmission. Motivation behind this work is design of a spectrum sensing method which is best suited for detection of white spaces during the transmission of video as a primary user on SDR platform.


2014 ◽  
Vol 631-632 ◽  
pp. 512-515
Author(s):  
Ai Ping Cai ◽  
Xin Zheng

the application of mobile learning is the main application of intelligent mobile terminal realizes on pattern, this paper focuses on the Android platform to realize mobile multimedia data real-time transmission, by optimizing the data transmission speed, to meet the learners' online learning, for subsequent teaching and interaction provides a good technical support.


2014 ◽  
Vol 6 (1) ◽  
pp. 41-46
Author(s):  
Agus Purwadi ◽  
Hadria Octavia ◽  
Ichsan Mahjud

Video transmission over the internet can be a great possibility of the existence of lost packets (packet loss) and load variations in a large bandwidth. This is a source of network congestion can interfere with the rate of data communication. In this paper the proposed planning optimal error control in scalable video transmission to a video coding technique FGS (Fine Granularity Scalability), which is an improvement on the MPEG-4 video coding, which has outputs are scalable base layer and layer Enhanchement that have different sizes and rates , which the application will be adapted to the transmission network conditions, the ultimate goal is to minimize any distortion from the source to the destination. In the simulation yields a value Peak Signal to Noise Ratio (PSNR) on the base layer of 29, 683 dB and 78,917 dB enhancemenet layer and the base layer for the MSE of 69,998 dB and 0,000834417 dB  enhancemenet layer, Means Square Error (MSE) as the performance of the network system performance on video quality for both the base layer and layer Enhanchement


2011 ◽  
Vol 187 ◽  
pp. 383-388
Author(s):  
Shao Huang ◽  
Shu Rong Wang ◽  
Yu Liang Tang

The paper studied the basic principles of the RTP/RTCP protocol in real-time transmission of multimedia applications, explained the basic applications of multicast technology in stream transmission and put forward a real-time video transmission system combined with DirectShow technology. Then, it presented the details of the multicast transmission of multimedia files in the process through the RTP protocol.


2012 ◽  
Vol 532-533 ◽  
pp. 1167-1171
Author(s):  
Yun Zhou

With the ever-increasing expansion of wireless voice and data plan demands, bandwidth constrained wireless channels intervened with mobility issues lay out a great challenge in the hardware configuration, software development and algorithm design of communication systems. This paper presents our work on a modular and standards-independent DSP-based testbed designed for real-time video communication over low-bandwidth channels. In particular, the real-time transmission of MPEG-4 video and JPEG2000 still images over the Bluetooth wireless standard is demonstrated here. The testbed was designed to explore the possibilities, demands, and challenges of real-time wireless video transmission. The work could have tremendous near-future applications.


2017 ◽  
Vol 4 (1) ◽  
pp. 25
Author(s):  
Agus Purwadi ◽  
Baharuddin Baharuddin

Video transmission over the internet can be a great possibility of the existence of lost packets (packet loss) and load variations in a large bandwidth. This is a source of network congestion can interfere with the rate of data communication. In this paper the proposed planning optimal error control in scalable video transmission to a video coding technique FGS (Fine Granularity Scalability), which is an improvement on the MPEG-4 video coding, which has outputs are scalable base layer and layer Enhanchement that have different sizes and rates, which the application will be adapted to the transmission network conditions, the ultimate goal is to minimize any distortion from the source to the destination. In the simulation yields a value Peak Signal to Noise Ratio (PSNR) on the base layer of 29, 683 dB and 78,917 dB enhancemenet layer and the base layer for the MSE of 69,998 dB and 0,000834417 dB enhancemenet layer, Means Square Error (MSE) as the performance of the network system performance on video quality for both the base layer and layer Enhanchement.


Sign in / Sign up

Export Citation Format

Share Document