scholarly journals "Synthesis of Molybdenum Oxide Nanoparticles by Sol-Gel Method for Ammonia Gas Sensing"

Author(s):  
Bapurao G Bharate
2019 ◽  
Vol 9 (3) ◽  
pp. 362-370 ◽  
Author(s):  
D. Vaya ◽  
Meena ◽  
B.K. Das

Background: The properties of the material are altered when material size shifted towards nano-regime. This feature could be used for wastewater treatment process using model pollutant such as dyes. Recently, nanoparticles are synthesized by a green chemical route using different capping agents. This is the reason we adopt starch as green capping agent along with sol-gel method. Objective: To synthesize cobalt oxide nanoparticles by green chemical route and utilized it in degradation of dyes. Methods: Synthesis of cobalt oxide nanoparticles by sol-gel method using starch as a capping agent. The characteristics of surface modifications were investigated by UV-VIS, TEM, SEM, XRD and FTIR techniques. Results: Cobalt oxide nanoparticles synthesized and inhibited photocatalytic activity. Conclusion: Deactivation of photocatalytic activity due to complex nature of starch. This property can be used elsewhere as in light shielding applications to coat and protect surfaces in order to keep them cool and safe from damage as in the painting of vehicles, roofs, buildings, water tanks, etc.


2021 ◽  
Vol 93 (3) ◽  
pp. 30401
Author(s):  
Jiaxing Wang ◽  
Hai Yu ◽  
Yong Zhang

SnO2 nanoparticle architectures were successfully synthesized using a sol-gel method and developed for acetone gas detection. The morphology and structure of the particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SnO2 nanoparticle architectures were configured as high-performance sensors to detect acetone and showed a very fast response time (<1 s), a short recovery time (10 s), good repeatability and high selectivity at a relatively low working temperature. Thus, SnO2 nanoparticles should be promising candidates for designing and fabricating acetone gas sensors with good gas sensing performance. The possible gas sensing mechanism is also presented.


Author(s):  
Kouakou Yao Urbain ◽  
Kambiré Ollo ◽  
Gnonsoro Urbain Paul ◽  
Eroi N’goran Sévérin ◽  
Trokourey Albert

Aims: The pollution of the environment by organic dyes in water is a matter of great concern. Wastewater containing dyes is difficult to treat by conventional wastewater treatment methods such as coagulation, ozonation, biological treatment, etc. This is why the implementation of an effective method by not generating pollutants secondary is necessary. The objective of this work is to study the degradation of remazol black, an azo dye, by the coupling of hydrogen peroxide - molybdenum oxide nanoparticle. The nanoparticles were synthesized by the aqueous sol-gel method using a reflux assembly. Study Design: Random design. Methodology: The nanoparticles were synthesized by the aqueous sol-gel method using a reflux assembly and then characterized by X-ray diffraction and using software origin to determine the particles size by Scherrer's formula. The influence of hydrogen peroxide, molybdenum oxide and hydrogen peroxide / molybdenum oxide coupling, and the degradation kinetics of remazol black were studied. We also studied the influence of the pH of the solution, the mass of molybdenum nanoparticles and the concentration of remazol black on the dye degradation process. Results: The results showed that the synthesized oxide is ammonium molybdenum trioxide NH3(MoO3)3) with a hexagonal structure and size 22.79 nm. The study of the catalytic effect revealed a degradation rate of 17%, 0.83% and 42% respectively for H2O2, NH3(MoO3)3 and the coupling NH3(MoO3)3/H2O2. The study also showed that the degradation of remazol black by the couple NH3(MoO3)3 /H2O2 is better at pH = 4 and for a mass of nanoparticles of 400 mg. This degradation kinetics are pseudo 1st order. In addition, the degradation rate decreases when the concentration of remazol black increases. The efficiency of the coupling (NH3(MoO3)3 / H2O2 showed at ambient temperature, that it was possible to remove about 60% of the initial color of remazol black from the water in a batch reaction. Conclusion: The reflux method makes it possible to synthesize molybdenum nanoparticles. The molybdenum oxide hetero-Fenton process is effective in removing remazol black dye from water.


2018 ◽  
Vol 29 (14) ◽  
pp. 11830-11839 ◽  
Author(s):  
S. M. Patil ◽  
S. A. Vanalakar ◽  
A. G. Dhodamani ◽  
S. P. Deshmukh ◽  
V. L. Patil ◽  
...  

2012 ◽  
Vol 5 (1) ◽  
pp. 109-113 ◽  
Author(s):  
S. C. Kulkarni ◽  
C. S. Aher ◽  
R. Y. Borse ◽  
B. G. Bharate ◽  
SalemS. Al-Deyab ◽  
...  

2012 ◽  
Vol 159 (12) ◽  
pp. B845-B849 ◽  
Author(s):  
Sayaka Yanagida ◽  
Mitsuhiro Makino ◽  
Takeshi Ogaki ◽  
Atsuo Yasumori

Particuology ◽  
2011 ◽  
Vol 9 (5) ◽  
pp. 471-474 ◽  
Author(s):  
Xiuhua Li ◽  
Xiujuan Xu ◽  
Xin Yin ◽  
Chunzhong Li ◽  
Jianrong Zhang

Sign in / Sign up

Export Citation Format

Share Document