The Pteridophytes of Adams, Northern Luzon, Philippines and their Ecosystem Services

2017 ◽  
Vol 11 (2) ◽  

The Philippines has approximately 1,100 species of lycophytes and ferns, and this represents approximately 9% of the worldwide fern flora. Botanical explorations and local documentations continue to expand the list. Local documentations increase our knowledge on species distribution and conservation status, which are essential in biodiversity conservation. This paper reports on a survey of the pteridophytes of Adams, Ilocos Norte, one of the remaining floristic sites in Luzon Island, Philippines. A series of floristic surveys conducted at selected sites in Adams recorded and vouchered 47 species, 34 genera and 21 families of pteridophytes. Among all these pteridophytes, six are threatened Philippine plant species. These are Platycerium coronarium, Ceratopteris thalictroides, Tectaria psomiocarpa, Psilotum nudum, Blechnum egregium, and Angiopteris evecta. This study contributes to the baseline data on Philippine pteridophytes especially on their distribution, and can serve as reference for biodiversity conservation and restoration efforts as ferns may help in the stabilization of degraded lands and facilitation in plant communities.

2021 ◽  
Vol 16 (3) ◽  
pp. 085-090
Author(s):  
Stoyan Vergiev

The aims of the present study were: 1) to perform a detailed mapping of the distribution of conservationally significant (endemic, vulnerable, endangered and protected) plant species in the group "Kanarata and Quarry Drenaka" of the protected area "Pobiti Kamani" for 2020 yr in GIS environment; 2) based on the overlap of the distribution sites of plant species, to determine the "hot spots" of plant biodiversity, access to which should be limited in order to protect them and at the same time to identify areas with no or low concentration of conservationally important species in order to trace and mark the tourist paths in the protected area. In order to investigate the distribution of six plant communities, a detailed GIS mapping was performed. As a result of the study, detailed distribution maps of investigated species communities in Central Group were drawn. Special attention is paid to the zones where two or more communities were overlapped. The identification of the areas with concentration of conservation-significant species and localization of "hot spots" is crucial for protection management of the group "Kanarata and Quarry Drenaka" of the protected area "Pobiti Kamani". The model of "hot spots" and the model of overlapping are applicable and in combination with detailed distribution maps are fundamental for more successful protection and conservation. The suggested touristic zones with lack of conservation species can be used to trace and to construct environmentally friendly tourist trail and paths without destroying and harming the species, their habitats, and the aesthetic and recreational value of the landscapes.


Koedoe ◽  
2013 ◽  
Vol 55 (1) ◽  
Author(s):  
Clifton S. Meek ◽  
Dave M. Richardson ◽  
Ladislav Mucina

Riparian plant communities fulfil many functions, including the provision of corridors linking protected areas and other zones of high conservation value. These habitats across much of South Africa’s Cape Floristic Region, especially in the lowlands, have been heavily impacted and degraded by human activities. There is increasing interest in the restoration of degraded riparian zones and the ecosystem services they provide to enhance the conservation value of landscapes. Previous studies of riparian vegetation in the Cape Floristic Region focused on pristine headwater systems, and little is known about human-impacted communities that make up most of the riparian vegetation in downstream areas. More information is needed on the composition of these plant communities to establish a baseline for management intervention. The riparian zone of the Eerste River in South Africa’s Western Cape province provides a good opportunity to study the features of riparian vegetation along the entire gradient, from pristine vegetation in a protected area through different levels of human-mediated degradation. Riparian vegetation was surveyed in 150 plots along the entire length of the Eerste River (ca. 40 km). Data were analysed using the vegetation classification and analysis software package JUICE. Final groupings were plotted onto a two-dimensional detrended correspondence analysis plane to check the position of the communities in the reduced multidimensional space. Ten distinct plant communities were identified, including several novel communities dominated by alien plant species. Descriptions of each plant community are presented. Diagnostic, constant and dominant species are listed and the major structural and ecological characteristics of each community are described.Conservation implications: Major changes to hydrological and soil properties, nutrient dynamics and disturbance regimes and plant species composition along sections of the riparian zone mean that restoration of many of these habitats to their historic condition is not feasible. However, several native plant species that provide key ecosystem services persist in and adjacent to transformed communities, offering substantial opportunities for restoration to achieve certain goals.


2021 ◽  
Vol 93 (3) ◽  
pp. 341-363
Author(s):  
Piotr Archiciński ◽  
Piotr Sikorski ◽  
Daria Sikorska ◽  
Arkadiusz Przybysz

There is wide recognition that urban green space provides city residents with considerable benefits, inter alia of an environmental, economic and health-related profile. However, the different types of urban greenery include a rather large proportion taking the form of vegetation on abandoned sites that remain uncultivated, to the extent that a plant cover develops without much active human involvement. Almost by definition, there is only a poor level of recognition of the ecological potential such sites (here referred to as “informal green spaces” – IGS) enjoy, or of their capacity to render a variety of different ecosystem services. Against that background, the work presented here entailed in-depth study of the flora and plant communities present in Warsaw’s informal green spaces, the aim being to better ascertain their role in preserving biodiversity and delivering ecosystem services. Specifically, we identified the plant species composition present at 75 different locations within the urban green space of Poland’s capital city. To qualify for consideration, these sites had to be identified as entirely bereft of vegetation maintenance, or else only minimally subject to it, to the extent that it is largely processes of natural succession that are ongoing. The sites in fact range from wastelands with stabilised vegetation, via urban scrub and forest, through to non-forest habitats, sporadically cultivated and established over 20 years. We determined the density of vegetation present, and examined its structure in relation to various known classes of green space. We further determined the role of various vegetation types in rendering ecosystem services, be that surface cooling, substrate moisture maintenance or a capacity to remove particulate matter from the air. The informal green spaces we investigated are in fact found to comprise mainly-stable forest communities dominated by invasive species of tree (phytosociological Classes Robinietea and Salicetea purpureae), as well as non-forest communities (of Classes Molinio-Arrhenatheretea, Epilobietea and Artemisietea) again largely dominated by invasive plant species. The level of biodiversity here is average, it mostly being common forest and non-forest species that are preserved. However, in exceptional cases, the habitats constituted here do support species rare on a regional scale. It emerges that the forest vegetation is of weakly-diversified structure, as a reflection of the specific strategy invasive species pursue as they form monospecific communities. As noted already, the vegetation of the informal green spaces is seen to be largely dominated by such invasive species. Nevertheless, despite their evidently limited role in preserving biodiversity, these sites represent such a high density and volume of vegetation that their provisioning of ecosystem services is on a high level, especially where forest plant communities are involved. Sites that have come to be dominated by invasive plant species are shown to render ecosystem services comparable with (or sometimes even surpassing) those provided by native species, and this is especially the case when it comes to the removal of particulate matter from air and the exerting of a cooling effect.


2021 ◽  
Vol 14 (3) ◽  

Quezon Protected Landscape (QPL) is a tropical rainforest situated at the southern Sierra Madre mountain range. However, it is subjected to anthropogenic pressure that poses threats to its flora and fauna. This study was conducted to describe the plant diversity, assess their ecological and conservation status, and to identify current anthropogenic threats in various vegetation types in QPL. Vegetation assessment was done using quadrat method established at different land use types wherein ninety 10×10 m nested plots were used for trees, 5×5 m subplots were used for herbs and shrubs, and 1×1 m subplots were used for grasses. The study documented a total of 328 species belonging to 84 families and 208 genera with 2,737 individuals. Species diversity is high as revealed by the values obtained from species diversity (H’) and species evenness (J’) indexes. Out of 172 tree species identified, the most important species are: Parashorea malaanonan (Blanco) Merr. in the regenerating and lowland evergreen dipterocarp forest; Diospyros pyrrhocarpa Miq. in the karst forest; Leucaena leucocephala (Lam.) de Wit in the secondary forest; and Cocos nucifera L. in the agroforest. Assessment of ecological status showed that out of 328 species, 213 (64.94%) are native, wherein 65 (19.8%) are endemic, and 115 (35.06%) are introduced. Forty-five species (13.72%) are threatened in which 25 of those are endemic in the Philippines. Overall, QPL has a wide array of plant species and threats such as the illegal extraction of natural resources, encroachment, cleanliness and presence of invasive alien species. So, it is recommended that protection and awareness campaign should be done for conservation and sustainability. KEYWORDS: Importance Value Index, invasive species, species diversity, threatened species, vegetation analysis


2017 ◽  
Vol 18 (4) ◽  
pp. 1568-1588
Author(s):  
SITI NURFADILAH ◽  
LIA HAPSARI ◽  
ILHAM KURNIA ABYWIJAYA

Nurfadilah S, Hapsari L, Abywijaya IK. 2017. Species richness, conservation status, and potential uses of plants in Segara Anakan Area of Sempu Island, East Java, Indonesia. Biodiversitas 18: 1568-1588. Sempu Island is a small Island in Indonesia that has an important functional role as a nature reserve to protect unique landscapes and high plant species richness. Within the Island, one of the most frequently visited areas, Segara Anakan, needs careful attention in order to conserve its plant diversity. The objectives of the present study were to investigate the species richness, conservation status, and potential uses of plants in Segara Anakan, Sempu Island. The aim was to support management of the area and to reveal plants that have potential to be developed for useful products. A total of 77 plant species belonging to 43 families were recorded within the study area. These consisted of trees (55.84 %), shrubs (33.77%), herbs (9.09%) and epiphytes (1.3%). Two species were listed in the IUCN Red List as endangered (Cycas circinalis L. and Myristica teijsmannii Miq.). Plant species in Segara Anakan have many potential uses; namely for staple food, fruits, vegetables, flavouring, beverages, herbal medicines, timbers, ornamental plants, natural dyes, and other uses. The study has implications for biodiversity conservation and management of Sempu Island. Plant species on the IUCN Red List should receive priority in conservation efforts. Data concerning the potential uses of plants can serve as a basis for biodiversity conservation on Sempu Island.


2020 ◽  
Vol 54 (2) ◽  
pp. 497-513 ◽  
Author(s):  
L. N. Beldiman ◽  
I. N. Urbanavichene ◽  
V. E. Fedosov ◽  
E. Yu. Kuzmina

We studied in detail a moss-lichen component of Shokalsky Island vegetation for the first time and identified 79 species of mosses and 54 species and 2 subspecies of lichens and lichenicolous fungi. All species of mosses and 23 species and 2 subspecies of lichens and lichenicolous fungi are recorded for the first time for the island. The study is based on collections made in South West part of the island, in arctic tundra. We also explored the participation of the mosses and lichens in the main types of plant communities and the species distribution in 10 ecotopes. The paper describes the noteworthy findings (Abrothallus parmeliarum, Aongstroemia longipes, Arthonia peltigerea, Caloplaca caesiorufella, Catillaria stereocaulorum, Ceratodon heterophyllus, Lecanora leptacinella, Sphagnum concinnum, S. olafii) and features of bryo- and lichenoflora of Shokalsky Island.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


Sign in / Sign up

Export Citation Format

Share Document