scholarly journals Nanostructured materials for CBRNdetection

Author(s):  
Alexandru SIRGHIE ◽  
◽  
Mihai OPROESCU ◽  
Gabriel Vasile IANA ◽  
Adriana Gabriela PLAIASU

Nanomaterials are gaining significance in technological applications due to their chemical, physical, and mechanical properties and enhanced performance when compared with their bulkier counterparts. The synthesis of nanostructured materials has led to a significant increase in properties (thermal, optical, electrical, magnetic, mechanical) as well as the discovery of materials with new properties due the fact that at the nanoscale the materials have a high surface area Most applications of nanomaterials in sensors are related to their synthesis. In this paper we report recent trends in applications of various nanomaterials such as nanoparticles, carbon nanotubes, nanowires andgraphene to detect CBRN agents.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1328 ◽  
Author(s):  
Marlon Danny Jerez-Masaquiza ◽  
Lenys Fernández ◽  
Gema González ◽  
Marjorie Montero-Jiménez ◽  
Patricio J. Espinoza-Montero

In this work, a new hydrogen peroxide (H2O2) electrochemical sensor was fabricated. Prussian blue (PB) was electrodeposited on a glassy carbon (GC) electrode modified with zirconia doped functionalized carbon nanotubes (ZrO2-fCNTs), (PB/ZrO2-fCNTs/GC). The morphology and structure of the nanostructured system were characterized by scanning and transmission electron microscopy (TEM), atomic force microscopy (AFM), specific surface area, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman and Fourier transform infrared (FTIR) spectroscopy. The electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (CA). Zirconia nanocrystallites (6.6 ± 1.8 nm) with cubic crystal structure were directly synthesized on the fCNTs walls, obtaining a well dispersed distribution with a high surface area. The experimental results indicate that the ZrO2-fCNTs nanostructured system exhibits good electrochemical properties and could be tunable by enhancing the modification conditions and method of synthesis. The fabricated sensor could be used to efficiently detect H2O2, presenting a good linear relationship between the H2O2 concentration and the peak current, with quantification limit (LQ) of the 10.91 μmol·L−1 and detection limit (LD) of 3.5913 μmol·L−1.


2001 ◽  
Vol 206-213 ◽  
pp. 1965-1968 ◽  
Author(s):  
Zhen-Yan Deng ◽  
Takayuki Fukasawa ◽  
Guo Jun Zhang ◽  
Motohide Ando ◽  
Tatsuki Ohji

Nanomaterials ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 206-216 ◽  
Author(s):  
Aeran Kim ◽  
Seongyop Lim ◽  
Dong-Hyun Peck ◽  
Sang-Kyung Kim ◽  
Byungrok Lee ◽  
...  

2007 ◽  
Vol 100 (1-3) ◽  
pp. 1-5 ◽  
Author(s):  
Jun Jie Niu ◽  
Jian Nong Wang ◽  
Ying Jiang ◽  
Lian Feng Su ◽  
Jie Ma

2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
Ganesan Sriram ◽  
Pravin Patil ◽  
Mahesh P. Bhat ◽  
Raveendra M. Hegde ◽  
Kanalli V. Ajeya ◽  
...  

Pristine aluminum (Al) has received great deal of attention on fabrication of nanoporous anodized alumina (NAA) with arrays of nanosized uniform pores with controllable pore sizes and lengths by the anodization process. There are many applications of NAA in the field of biosensors due to its numerous key factors such as ease of fabrication, high surface area, chemical stability and detection of biomolecules through bioconjugation of active molecules, its rapidness, and real-time monitoring. Herein, we reviewed the recent trends on the fabrication of NAA for high sensitive biosensor platforms like bare sensors, gold coated sensors, multilayer sensors, and microfluidic device supported sensors for the detection of various biomolecules. In addition, we have discussed the future prospectus about the improvement of NAA based biosensors for the detection of biomolecules.


Carbon ◽  
2002 ◽  
Vol 40 (9) ◽  
pp. 1614-1617 ◽  
Author(s):  
E Raymundo-Piñero ◽  
D Cazorla-Amorós ◽  
A Linares-Solano ◽  
S Delpeux ◽  
E Frackowiak ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Naumih M. Noah

There has been an increasing demand for the development of sensor devices with improved characteristics such as sensitivity, low cost, faster response, reliability, rapider recovery, reduced size, in situ analysis, and simple operation. Nanostructured materials have shown great potential in improving these properties for chemical and biological sensors. There are different nanostructured materials which have been used in manufacturing nanosensors which include nanoscale wires (capability of high detection sensitivity), carbon nanotubes (very high surface area and high electron conductivity), thin films, metal and metal oxide nanoparticles, polymer, and biomaterials. This review provides different methods which have been used in the synthesis and fabrication of these nanostructured materials followed by an extensive review of the recent developments of metal, metal oxides, carbon nanotubes, and polymer nanostructured materials in sensor applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 19143-19162 ◽  
Author(s):  
Dinesh K. Patel ◽  
Sayan Deb Dutta ◽  
Ki-Taek Lim

Nanocellulose, derived from cellulose hydrolysis, has unique optical and mechanical properties, high surface area, and good biocompatibility.


2005 ◽  
Vol 14 (11-12) ◽  
pp. 1897-1900 ◽  
Author(s):  
Chien-Chung Chen ◽  
Chia-Fu Chen ◽  
I-Hsuan Lee ◽  
Chien-Liang Lin

Author(s):  
Bhupesh Chandra ◽  
Joshua T. Kace ◽  
Yuhao Sun ◽  
S. C. Barton ◽  
James Hone

In recent years carbon nanotubes have emerged as excellent materials for applications in which high surface area is required e.g. gas sensing, hydrogen storage, solar cells etc. Ultra-high surface to volume ratio is also a desirable property in the applications requiring enhanced catalytic activity where these high surface area materials can act as catalyst supports. One of the fastest developing areas needing such materials is fuel-cell. Here we investigate the process through which carbon nanotubes can be manufactured specifically to be used to increase the surface area of a carbon paper (Toray™). This carbon support is used in bio-catalytic fuel cell as an electrode to support enzyme which catalyzes the redox reaction. Deposition of nanotubes on these carbon fibers can result in great enhancement in the overall surface area to support the enzyme, which increases the reaction rate inside the fuel cell. The present paper describes a method to achieve ultra-thick growth of multiwall carbon nanotubes (MWNT) on a carbon Toray™ paper using a joule heating process and gas-phase catalyst. Using this method, we are able to achieve rapid, high-density, and uniform MWNT growth. This method is also potentially scalable toward larger-scale production.


Sign in / Sign up

Export Citation Format

Share Document