scholarly journals Miniaturized MIMO Antenna with Low Inter-radiator Transmittance and Band Rejection Features

2021 ◽  
Vol 21 (4) ◽  
pp. 307-315
Author(s):  
Muhammad Irshad Khan ◽  
Muhammad Irfan Khattak ◽  
Mauth Al-Hasan

In this article, compact a multiple-input and multiple-output (MIMO) system with flag-shaped radiators and a mountain-shaped ground plane is presented. Isolation is enhanced with the help of a decoupling stub placed between radiators, where two bands are stopped with the help of slits etched into the radiators. The overall size of the proposed antenna is 15 mm ×25 mm ×1.6 mm. The reflection coefficients are less than -10 dB between 3–10.9 GHz, except the bands WiMAX (3.2–3.7 GHz) and WLAN (5–6 GHz); similarly, measured and simulated transmission coefficients are less than -20 dB across the entire band of UWB. The envelope correlation coefficient (ECC) is less than 0.02 and the diversity gain is greater than 9.9 dB. The gain, ECC, radiation pattern, multiplexing efficiency, diversity gain and various other parameters are discussed and evaluated in detail.

2016 ◽  
Vol 9 (5) ◽  
pp. 1147-1153 ◽  
Author(s):  
Ling Wu ◽  
Yingqing Xia

With quad-band-notched characteristic, a compact ultrawideband (UWB) multiple-input-multiple-output (MIMO) antenna is introduced in the paper. The UWB–MIMO system has two similar monopole elements and occupies 30 × 45 mm2. By inserting two L-shaped slots, CSRR and C-shaped stubs, four notched bands are achieved (3.25–3.9, 5.11–5.35, 5.5–6.06, and 7.18–7.88 GHz) to filter WiMAX, lower WLAN, upper WLAN, and X-band. Meanwhile, the isolation is obviously enhanced with three metal strips on the ground plane. Results indicate that the antenna covers UWB frequency band of 3.1 – 10.6 GHz except four rejected bands, isolation of better than −18 dB, envelope correlation coefficient of <0.02, and good radiation pattern, thus making it useful for UWB systems.


In this paper, simple triband Multiple Input and Multiple Output (MIMO) antenna is proposed for wireless communication technology. This antenna consists of two symmetric monopoles which are placed at a distance of 0.106λ0 and for board area it occupies 0.25λ0*0.26λ0 . By integrating a stub in the ground plane and adding the stub in the feed line, isolation is achieved more than 20dB.This triband MIMO antenna operates under 2.5GHz, 3.3GHz and 4.4 GHz. The proposed antenna gives Radiation Patterns and Stable Gain. Mean effective gain (MEG) and Diversity Gain (DG) are also measured.


2018 ◽  
Vol 10 (8) ◽  
pp. 948-955 ◽  
Author(s):  
Ling Wu ◽  
Yingqing Xia ◽  
Xia Cao ◽  
Zhengtao Xu

AbstractA simple multiple-input-multiple-output (MIMO) antenna with quad-band-notched characteristics for ultra-wideband (UWB) system is proposed and tested in the article. Based on two similar radiators, the UWB-MIMO system only occupies 22 mm × 28 mm. By etching an inverted L-like meander slot, two inverted L-shaped slots, and adding a C-shaped stub beside the feeding line, four notched bands are realized (3.25–3.6, 5.05–5.48, 5.6–6, and 7.8–8.4 GHz) to suppress interference from WiMAX, lower WLAN, upper WLAN, and uplink of X-band satellite communication system. With a T-like stub extruding from the ground plane, port isolation is effectively improved. The results show that the antenna covers 3.1–10.6 GHz UWB frequency band except four rejected bands and has high isolation of better than −20 dB over most of the frequency band. Moreover, envelope correlation coefficient and good radiation patterns also prove that the introduced antenna is suitable for UWB applications.


Author(s):  
С.М. Фёдоров ◽  
Е.А. Ищенко ◽  
И.А. Зеленин ◽  
Е.В. Папина ◽  
Е.Д. Меньшикова ◽  
...  

Рассматривается MIMO антенная решетка, сформированная из двух антенн Вивальди, которые должны обеспечить работу в частотном диапазоне, выделенном для сетей пятого поколения - 24,25-24,65 ГГц. Для определения основных параметров антенны применялось моделирование, на основе которого были установлены основные характеристики MIMO антенной решетки: коэффициент корреляции огибающей, коэффициент усиления при разнесенном режиме, эффективность сложения. По результатам было определено, что при расстоянии между антеннами в 6,13 мм достигаются максимально возможные характеристики MIMO антенной решетки, а для стабильного функционирования достаточным является расстояние в 2,45 мм. В статье приводятся размеры исследуемой антенны, графики обратных потерь (S - параметров), диаграммы направленности, коэффициентов корреляции огибающих, коэффициента усиления при разнесенном режиме, эффективности сложения при различных расстояниях между антенными элементами. Обеспечение стабильности работы MIMO антенной решетки является важной задачей, так как все современные системы связи используют эту технологию для реализации многоканальной передачи, а следовательно, для повышения скорости передачи информации. Для определения геометрических характеристик и выполнения моделирования применялось специализированное программное обеспечение The article discusses a MIMO antenna array formed of two Vivaldi antennas, which should provide operation in the frequency range allocated for fifth generation networks - 24.25-24.65 GHz. To determine the main parameters of the antenna, we applied modeling, on the basis of which we determined the main characteristics of the MIMO antenna array: the envelope correlation coefficient, the diversity gain, the multiplexing efficiency. According to the results, we determined that with a distance between antennas of 6.13 mm, the maximum possible characteristics of a MIMO antenna array are achieved, and a distance of 2.45 mm is sufficient for stable operation. The article gives the dimensions of the antenna under study, graphs of return loss (S11 - parameters), radiation patterns, envelope correlation coefficient, diversity gain, multiplexing efficiency at different distances between the antenna elements. Ensuring the stability of the MIMO antenna array is an important task since all modern communication systems use this technology to implement multichannel transmission, and, consequently, to increase the information transfer rate. We used specialized software to determine geometric characteristics and perform modeling


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wenjing Wu ◽  
Bo Yuan ◽  
Aiting Wu

A compact planar quad-element ultrawideband (UWB) antenna with a band-notch and low coupling for multiple-input multiple-output (MIMO) system is proposed in this paper. The antenna consists of four circular monopoles with modified defected ground plane and a periodic electromagnetic band gap (EBG) structures. The proposed EBG structures are modified from the traditional mushroom-like ones, comprised of patterns of grids on the top patch, the metallic ground plane, and several vias that connect the top and bottom plane. It is printed at the center of the dielectric substrate to lower electromagnetic coupling between the parallel elements. Besides, by etching four crescent ring-shaped resonant slots on the radiators, a sharp band-notched characteristic is achieved. From the experimental results, the −10 dB bandwidth of the antenna is extended covers from 3.0 to 16.2 GHz, with a sharp notched band at 4.6 GHz. And the isolation is greater than 17.5 dB between its elements, with a peak gain of 8.4 dB and a peak efficiency of 91.2%. Moreover, it has a compact size of 0.6λ×0.6λ×0.016λ at 3 GHz and could be a good candidate for portable devices.


Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Zixian Yang ◽  
Hongchun Yang ◽  
Haijuan Cui

A compact printed MIMO antenna for mobile terminals is presented. With two planar antenna elements, the −6 dB impedance bandwidth of 2.32 GHz (1.48–3.8 GHz) is obtained, which covers GSM 1800/1900, UMTS, WLAN, Wimax, S-band, and most of LTE bands. Each antenna element with a small occupation of 15 × 20 mm2consists of a driven strip and a shorted strip. Two inverted C-shaped ground branches are introduced between two elements to improve the isolation. The simulated results are studied and the measured results show that high isolation of more than 18 dB at the entire operating band is achieved. Meanwhile, the impedance performance is also improved by adding the branches. Furthermore, the measured radiation performances and envelope correlation coefficient also demonstrate that the proposed antenna could be a good candidate for mobile terminals.


Sign in / Sign up

Export Citation Format

Share Document