Commonalities in biological and technological evolution through exaptation

Undoubtedly is a technological revolution that has certainly focused on the interest of software development companies, companies of IT, hardware design, networks and artificial intelligence. A technological revolution that started a few years ago and has evolved rapidly, thanks to the technological evolution of IT and networks. It is a combination of many communication protocols, sensors and other intelligent technologies, the correlation between smart technologies, networks and services that all together complete processes in order to achieve the result for which they were installed. In advanced technology countries, both simple users and industry use IoT where sensors are simplified and automated at home and in industry, there is continuous monitoring, control and prediction of product failure for the benefit of efficient production of high quality products and control production at each stage of product processing / production. Someone could well think and say that all this is fantastic and that we have solved the problem of organization, easy life without further thoughts and worries since everything is done automatically.An IoT in an intelligent house could literally regulate everything, using sensors and appropriate software could talk with a human person, as well as someone could appropriately entice all that security and literally take full control of the premises of a home with consequences from minimal to catastrophic including the complete destruction of a home.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2084
Author(s):  
Kostas Nizamis ◽  
Alkinoos Athanasiou ◽  
Sofia Almpani ◽  
Christos Dimitrousis ◽  
Alexander Astaras

Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human–machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals—namely, family members and professional carers—to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.


Author(s):  
Laura Pernigoni ◽  
Ugo Lafont ◽  
Antonio Mattia Grande

AbstractIn the last decade, self-healing materials have become extremely appealing for the field of space applications, due to their technological evolution and the consequent possibility of designing space systems and structures able to repair autonomously after damage arising from impacts with micrometeoroids and orbital debris, from accidental contact with sharp objects, from structural fatigue or simply due to material aging. The integration of these novel materials in the design of spacecraft structures would result in increased reliability and safety leading to longer operational life and missions. Such concepts will bring a decisive boost enabling new mission scenario for the establishment of new orbital stations, settlement on the Moon and human exploration of Mars.The proposed review aims at presenting the newest and most promising self-healing materials and associated technologies for space application, along with the issues related to their current technological limitations in combination with the effect of the space environment. An introductory part about the outlooks and challenges of space exploration and the self-healing concept is followed by a brief description of the space environment and its possible effects on the performance of materials. Self-healing materials are then analysed in detail, moving from the general intrinsic and extrinsic categories down to the specific mechanisms.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 461
Author(s):  
Yongbin Yim ◽  
Euisin Lee ◽  
Seungmin Oh

Recently, the demand for monitoring a certain object covering large and dynamic scopes such as wildfires, glaciers, and radioactive contaminations, called large-scale fluid objects (LFOs), is coming to the fore due to disasters and catastrophes that lately happened. This article provides an analytic comparison of such LFOs and typical individual mobile objects (IMOs), namely animals, humans, vehicles, etc., to figure out inherent characteristics of LFOs. Since energy-efficient monitoring of IMOs has been intensively researched so far, but such inherent properties of LFOs hinder the direct adaptation of legacy technologies for IMOs, this article surveys technological evolution and advances of LFOs along with ones of IMOs. Based on the communication cost perspective correlated to energy efficiency, three technological phases, namely concentration, integration, and abbreviation, are defined in this article. By reviewing various methods and strategies employed by existing works with the three phases, this article concludes that LFO monitoring should achieve not only decoupling from node density and network structure but also trading off quantitative reduction against qualitative loss as architectural principles of energy-efficient communication to break through inherent properties of LFOs. Future research challenges related to this topic are also discussed.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1929 ◽  
Author(s):  
Alessandro Cannavale ◽  
Francesco Martellotta ◽  
Francesco Fiorito ◽  
Ubaldo Ayr

This paper holds a critical review of current research activities dealing with smart architectural glazing worldwide. Hereafter, the main trends are analyzed and critically reported, with open issues, challenges, and opportunities, providing an accurate description of technological evolution of devices in time. This manuscript deals with some well-known, highly performing technologies, such as semitransparent photovoltaics and novel photoelectrochromic devices, the readiest, probably, to reach the final stage of development, to disclose the manifold advantages of multifunctional, smart glazing. The complex, overall effects of their building integration are also reported, especially regarding energy balance and indoor visual comfort in buildings.


Sign in / Sign up

Export Citation Format

Share Document