Analysis of genetic diversity in indian natural populations of i nbsp drosophila ananassae i

10.2741/e869 ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 237-253
Author(s):  
Pranveer Singh
2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Léo Duc Haa Carson Schwartzhaupt da Conceição ◽  
Rosemar Antoniassi ◽  
Nilton Tadeu Vilela Junqueira ◽  
Marcelo Fideles Braga ◽  
Adelia Ferreira de Faria-Machado ◽  
...  

2005 ◽  
Vol 83 (10) ◽  
pp. 1322-1328 ◽  
Author(s):  
Yong-Bi Fu ◽  
Bruce E. Coulman ◽  
Yasas S.N. Ferdinandez ◽  
Jacques Cayouette ◽  
Paul M. Peterson

Fringed brome ( Bromus ciliatus L.) is found in native stands throughout a large area of North America. Little is known about the genetic diversity of this species. The amplified fragment length polymorphism (AFLP) technique was applied to assess the genetic diversity of 16 fringed brome populations sampled in Canada from the provinces of Alberta, British Columbia, Quebec, and Saskatchewan. Four AFLP primer pairs were employed to screen 82 samples with four to six samples per population and 83 polymorphic AFLP bands scored for each sample. The frequencies of the scored bands in all assayed samples ranged from 0.01 to 0.99 and averaged 0.53. Analysis of molecular variance revealed that 52.6% of the total AFLP variation resided among the 16 populations and 20.6% among the four provinces. The five Quebec populations appeared to be genetically the most diverse and distinct. The AFLP variability observed was significantly associated with the geographic origins of the fringed brome populations. These findings are useful for sampling fringed brome germplasm from natural populations for germplasm conservation and should facilitate the development of genetically diverse regional cultivars for habitat restoration and revegetation.


2008 ◽  
Vol 17 (17) ◽  
pp. 3808-3817 ◽  
Author(s):  
ÜLO VÄLI ◽  
ANNIKA EINARSSON ◽  
LISETTE WAITS ◽  
HANS ELLEGREN

2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


BioTech ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 23
Author(s):  
Oxana Khapilina ◽  
Ainur Turzhanova ◽  
Alevtina Danilova ◽  
Asem Tumenbayeva ◽  
Vladislav Shevtsov ◽  
...  

Endemic species are especially vulnerable to biodiversity loss caused by isolation or habitat specificity, small population size, and anthropogenic factors. Endemic species biodiversity analysis has a critically important global value for the development of conservation strategies. The rare onion Allium ledebourianum is a narrow-lined endemic species, with natural populations located in the extreme climatic conditions of the Kazakh Altai. A. ledebourianum populations are decreasing everywhere due to anthropogenic impact, and therefore, this species requires preservation and protection. Conservation of this rare species is associated with monitoring studies to investigate the genetic diversity of natural populations. Fundamental components of eukaryote genome include multiple classes of interspersed repeats. Various PCR-based DNA fingerprinting methods are used to detect chromosomal changes related to recombination processes of these interspersed elements. These methods are based on interspersed repeat sequences and are an effective approach for assessing the biological diversity of plants and their variability. We applied DNA profiling approaches based on conservative sequences of interspersed repeats to assess the genetic diversity of natural A. ledebourianum populations located in the territory of Kazakhstan Altai. The analysis of natural A. ledebourianum populations, carried out using the DNA profiling approach, allowed the effective differentiation of the populations and assessment of their genetic diversity. We used conservative sequences of tRNA primer binding sites (PBS) of the long-terminal repeat (LTR) retrotransposons as PCR primers. Amplification using the three most effective PBS primers generated 628 PCR amplicons, with an average of 209 amplicons. The average polymorphism level varied from 34% to 40% for all studied samples. Resolution analysis of the PBS primers showed all of them to have high or medium polymorphism levels, which varied from 0.763 to 0.965. Results of the molecular analysis of variance showed that the general biodiversity of A. ledebourianum populations is due to interpopulation (67%) and intrapopulation (33%) differences. The revealed genetic diversity was higher in the most distant population of A. ledebourianum LD64, located on the Sarymsakty ridge of Southern Altai. This is the first genetic diversity study of the endemic species A. ledebourianum using DNA profiling approaches. This work allowed us to collect new genetic data on the structure of A. ledebourianum populations in the Altai for subsequent development of preservation strategies to enhance the reproduction of this relict species. The results will be useful for the conservation and exploitation of this species, serving as the basis for further studies of its evolution and ecology.


2021 ◽  
Author(s):  
Curtis M Lively ◽  
Julie Xu ◽  
Frida Ben-Ami

Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here we used computer simulations to examine host-parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2936 ◽  
Author(s):  
Caroline E. Dubé ◽  
Serge Planes ◽  
Yuxiang Zhou ◽  
Véronique Berteaux-Lecellier ◽  
Emilie Boissin

Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coralMillepora platyphylla, an important reef-builder of Indo-Pacific reefs.We tested the cross-species amplification of these loci in five other species of the genusMilleporaand analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target speciesM. platyphylla,among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five otherMilleporaspecies revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean speciesM. complanatadue to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species ofMillepora.Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoanMilleporaspecies creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.


2016 ◽  
Vol 75 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Marko Zebec ◽  
Marilena Idžojtić ◽  
Zlatko Šatović ◽  
Igor Poljak ◽  
Zlatko Liber

AbstractThe main objective of this research was to assess the genetic diversity of 5 natural field elm populations in Croatia. The study results suggest that the observed populations are characterized by a satisfactory amount of heterozygosity, and that the impact of the Dutch elm disease on the amount of genetic diversity in the sampled populations is currently negligible. However, one population displayed a significant excess of heterozygosity, implying a genetic bottleneck. The existence of a very clear genetic differentiation between the continental and the Mediterranean populations of Ulmus minor in Croatia was noticed.


Sign in / Sign up

Export Citation Format

Share Document