Design equation for overlap tubular K-joints under in-plane-bending

2002 ◽  
Vol 86 (4) ◽  
pp. 9-20
Author(s):  
Fabio Gazzola ◽  
Marcus M. K. Lee
Author(s):  
Gibin Gil ◽  
Sujin Lee

ABSTRACT In radial tires, belt structure plays a role of minimizing the lateral deflection of carcass, which has a significant influence on the cornering and wear properties of a tire. The deflection of carcass affects the magnitude of tread block deformation when the tire is under the slip angle. As a result, it can change the cornering stiffness characteristics of the tire, especially when the vertical load is high. During tire development, a tire design engineer tries to find the optimal belt ply angle that satisfies the various performance requirements simultaneously, but it is not an easy task because the effect of belt angle change is different depending on the size of the tire. There have been many attempts to construct a mathematical model that represents the structural properties of the belt package, including the string-based model and the beam on elastic foundation model. But, in many cases, only the in-plane bending of belt is considered and the shear deformation is not taken into consideration. In this study, the effect of belt angle change on belt stiffness is analyzed using a mathematical model based on the Timoshenko beam theory. This model can account for the in-plane bending and shear deformation of the belt structure at the same time. The results of the analysis show how the contribution of bending and shear is changed depending on a tire design parameter, herein the belt cord angle. The effect of belt ply angle change on cornering stiffness is investigated by means of the brush model including belt flexibility. The prediction by the brush model is compared with the measurement using a Flat-trac machine, and the validity of the model is discussed.


2008 ◽  
Vol 59 (2) ◽  
pp. 129-134
Author(s):  
Ion Teoreanu ◽  
Roxana Lucia Dumitrache ◽  
Stefania Stoleriu

Any change of the raw material sources for glazes, economically, ecologically motivated, and also from the glaze quality point of view, is conditioned by the molecular formula rationalization and by the variation limits of the molecular formula, respectively. The proper glaze compositions are placed within their limit variation intervals with optimized processing and utilization properties. For this purpose, the rationalization criteria and procedures of molecular formulas are summarized in the present paper, as well as the results referring to their rationalization obtained in the authors� previous work. Thus, one starts from a base of raw materials that are selected, usable and also accessible for the design and producing of the glazes. On these bases the groundwork and the design equation for the glaze recipes are developed, exemplified for a single glaze. For an easy access to results, computer programs are used for an easy access to results.


2020 ◽  
Vol 1004 ◽  
pp. 393-400
Author(s):  
Tuerxun Ailihumaer ◽  
Hongyu Peng ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Gilyong Chung ◽  
...  

Synchrotron monochromatic beam X-ray topography (SMBXT) in grazing incidence geometry shows black and white contrast for basal plane dislocations (BPDs) with Burgers vectors of opposite signs as demonstrated using ray tracing simulations. The inhomogeneous distribution of these dislocations is associated with the concave/convex shape of the basal plane. Therefore, the distribution of these two BPD types were examined for several 6-inch diameter 4H-SiC substrates and the net BPD density distribution was used for evaluating the nature and magnitude of basal plane bending in these wafers. Results show different bending behaviors along the two radial directions - [110] and [100] directions, indicating the existence of non-isotropic bending. Linear mapping of the peak shift of the 0008 reflection along the two directions was carried out using HRXRD to correlate with the results from the SMBXT measurements. Basal-plane-tilt angle calculated using the net BPD density derived from SMBXT shows a good correlation with those obtained from HRXRD measurements, which further confirmed that bending in basal plane is caused by the non-uniform distribution of BPDs. Regions of severe bending were found to be associated with both large tilt angles (95% black contrast BPDs to 5% white contrast BPDs) and abrupt changes in a and c lattice parameters i.e. local strain.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Sign in / Sign up

Export Citation Format

Share Document