X-Ray Investigation on the Deformation and Fatigue Fracture of Spring Steel in Plane Bending

1967 ◽  
Vol 16 (160) ◽  
pp. 26-31
Author(s):  
Shigetsune AOYAMA ◽  
Hirohiko NAMIKAWA
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


2020 ◽  
Vol 1004 ◽  
pp. 393-400
Author(s):  
Tuerxun Ailihumaer ◽  
Hongyu Peng ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Gilyong Chung ◽  
...  

Synchrotron monochromatic beam X-ray topography (SMBXT) in grazing incidence geometry shows black and white contrast for basal plane dislocations (BPDs) with Burgers vectors of opposite signs as demonstrated using ray tracing simulations. The inhomogeneous distribution of these dislocations is associated with the concave/convex shape of the basal plane. Therefore, the distribution of these two BPD types were examined for several 6-inch diameter 4H-SiC substrates and the net BPD density distribution was used for evaluating the nature and magnitude of basal plane bending in these wafers. Results show different bending behaviors along the two radial directions - [110] and [100] directions, indicating the existence of non-isotropic bending. Linear mapping of the peak shift of the 0008 reflection along the two directions was carried out using HRXRD to correlate with the results from the SMBXT measurements. Basal-plane-tilt angle calculated using the net BPD density derived from SMBXT shows a good correlation with those obtained from HRXRD measurements, which further confirmed that bending in basal plane is caused by the non-uniform distribution of BPDs. Regions of severe bending were found to be associated with both large tilt angles (95% black contrast BPDs to 5% white contrast BPDs) and abrupt changes in a and c lattice parameters i.e. local strain.


2014 ◽  
Vol 968 ◽  
pp. 63-66 ◽  
Author(s):  
Fei Zhao ◽  
Zhan Ling Zhang ◽  
Jun Shuai Li ◽  
Cui Ye ◽  
Ni Li

The microstructure and mechanical properties of the four spring steels with different Si content treated by Q-I-Q-T process were studied by metallographic microscope, MTS, impact testing machine and X-ray stress analyzer. The results show that the tensile strength and yield strength is first increased and then decreased with the increase of Si content, the volume fraction of retained austenite and elongation are fist decreased and then increased when the Si content is less than 2.1%, and the microstructure become finer and homogeneous. When Si content reaches 2.1%, the comprehensive properties of 60Si2CrVA spring steel is the best.


2008 ◽  
Vol 373-374 ◽  
pp. 754-757 ◽  
Author(s):  
Dong Ying Ju ◽  
B. Han

Water cavitation peening (WCP) with aeration is a novel surface enhancement method. A new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration, a standard N-type almen strips of spring steel SAE 1070 was treated by WCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by X-ray diffraction method. The optimal fluxes of aeration and the optimal standoff distances were achieved.


CrystEngComm ◽  
2017 ◽  
Vol 19 (27) ◽  
pp. 3844-3849 ◽  
Author(s):  
Yingxin Cui ◽  
Xiaobo Hu ◽  
Xuejian Xie ◽  
Rongkun Wang ◽  
Xiangang Xu

Basal plane bending of on- and off-axis 4H-SiC substrates was measured by high-resolution X-ray diffractometry (HRXRD).


CORROSION ◽  
10.5006/3234 ◽  
2019 ◽  
Vol 75 (12) ◽  
pp. 1474-1486
Author(s):  
Jéssica Cristina Costa de Castro Santana ◽  
Rejane Maria Pereira da Silva ◽  
Renato Altobelli Antunes ◽  
Sydney Ferreira Santos

The aim of the present work was to study the surface chemistry, microstructure, and local corrosion processes at the decarburized layer of the SAE 9254 automotive spring steel. The samples were austenitized at 850°C and 900°C, and oil quenched. The microstructure was investigated using confocal laser scanning microscopy and scanning electron microscopy. The surface chemistry was analyzed by x-ray photoelectron spectroscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess the global corrosion behavior of the decarburized samples. Scanning electrochemical microscopy was used to evaluate the influence of decarburization on the local corrosion activity. Microstructural characterization and x-ray photoelectron spectroscopy analysis indicate a dependence of the local electrochemical processes with the steel microconstituents and Si oxides in the decarburized layer.


CrystEngComm ◽  
2018 ◽  
Vol 20 (43) ◽  
pp. 6957-6962 ◽  
Author(s):  
Xianglong Yang ◽  
Jinying Yu ◽  
Xiufang Chen ◽  
Yan Peng ◽  
Xiaobo Hu ◽  
...  

Basal plane bending of 4H-SiC single crystals grown using the sublimation method on an open or closed backside seed was measured using high-resolution X-ray diffractometry.


1985 ◽  
Vol 51 (465) ◽  
pp. 1477-1482 ◽  
Author(s):  
Keiji OGURA ◽  
Yoshio MIYOSHI ◽  
Masahiro KAWAGUCHI ◽  
Masahiro KAYAMA

1993 ◽  
Vol 37 ◽  
pp. 327-334
Author(s):  
Akira Suzuki ◽  
Yoichi Kishi ◽  
Zenjiro Yajima ◽  
Yukio Hirose

Austempered ductile cast iron (ADI) has composite microstructures, which are martensite/retained austenite structures. ADI has very large toughness compared to other ductile cast irons. After fracture, the retained austenite near the fracture surface will be transformed to martensite. In the present study, X-ray fractography is applied to fatigue fracture surface of ADI. The fatigue tests were carried out on compact tension (CT) specimens. The volume fraction of retained austenite was quantitatively measured on and beneath fatigue fracture surfaces. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The depth of the plastic zone left on fracture surface was evaluated from the distributions of the volume fraction of retained austenite. The results are discussed on the basis of fracture mechanics.


Sign in / Sign up

Export Citation Format

Share Document