Investigations on the structural behaviour of CFRP reinforced concrete members for modular bridge constructions

2021 ◽  
Author(s):  
Sven Bosbach ◽  
Christian Knorrek ◽  
Josef Hegger ◽  
Alexander Stark

<p>The requirements for existing bridge structures increased significantly in the last years because of increasing traffic volume and higher total vehicle weights. Strengthening of existing bridges as well as necessary reconstructions are expensive, often complex and strongly influence traffic. Hence, the development of new methods for sustainable bridge constructions with short erection periods becomes a macroeconomic issue. Modular bridge constructions made of precast concrete elements with reinforcement systems made of corrosion-resistant carbon fibre reinforced polymer (CFRP) represent a particularly suitable solution for these demands. Modular systems are reasonable to realise short construction times and the application of durable CFRP reinforcement ensures a longer lifetime of the bridge. This paper reports on a developed concept for a modular system made of prefabricated concrete elements with CFRP reinforcement and on tests investigating the structural behaviour of prestressed CFRP reinforced concrete members.</p>

2011 ◽  
Vol 243-249 ◽  
pp. 5427-5434
Author(s):  
Hui Qian ◽  
Hong Nan Li ◽  
Di Cui ◽  
Huai Chen

Shape memory alloys (SMAs) are unique class materials that have the ability to undergo large deformations, while returning to their undeformed shape through either the applications of heat (SME) or removal of stress (SE). The unique properties lead to their wide applications in the biomedical, mechanical, aerospace, commercial industries, and recently in civil engineering. The paper presents two case studies of structural seismic vibration control using SMAs. The first one is a study of the SMA reinforced RC members. Two innovative applications in RC members, such as SMA-based Precast Concrete Frame Connection (SMA-PCFC), and SMA reinforced RC short column, were proposed. Moreover, the self-rehabilitation properties of SMAs-based Intelligent Reinforced Concrete Beams (SMA-IRCBs) were further experimentally investigated. The results show that SMAs can improve the mechanical properties of concrete members. SMA reinforced RC members have unique seismic performance compared to ordinarily steel reinforced concrete members. The second one is a study of the structural energy dissipation system using SMAs damping device. An innovative hybrid SMAs friction device (HSMAFD) which consists of pre-tensioned superelastic SMA wires and friction devices (FD) was presented. The results of cyclic tensile tests show that the HSMAFD exhibits stable large energy dissipation capacity and re-centering feature. The effectiveness of the HSMAFD in reducing horizontal response of structures subjected to strong seismic excitations was verified through shaking table tests carried out on a reduced-scale symmetric steel frame model with and without the HSMAFD.


2011 ◽  
Vol 94-96 ◽  
pp. 1523-1526
Author(s):  
Shi Bin Li ◽  
Hong Wei Tang ◽  
Xin Wang

Reinforced concrete (RC) structures are widely used in civil engineering for their merits. A good-quality concrete provides a highly alkaline environment that forms a passive film on reinforcement surface, preventing steel bars from corroding. Due to chloride attack or concrete carbonization, corrosion of embedded reinforcement in concrete members is common for RC structures. Much importance should be attached to the fatigue of corroded concrete bridges because they bear not only static loads but also alternate loads. Followed along with the aging of bridge structures, the increase of traffic volumes, the augment of vehicle loads as well as the deterioration of service environment, many corroded concrete bridges are urgently needed security appraisal and residual fatigue life forecast. Fatigue of corroded RC beams is a key problem for the existing corrosion-damaged concrete bridges. But the interrelated research was little. Based on the most new study information, the production on fatigue of corroded concrete beams was listed and analyzed, and the problems on fatigue of corroded concrete beams were indicated.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jongkwon Choi ◽  
Seong-Cheol Lee

A sectional analysis procedure for reinforced concrete members subjected to pure torsion is presented in this paper. On the development of the analysis procedure, the reinforced concrete section is modeled with reinforced concrete elements subjected to biaxial stress states, on the basis of the thin-walled tube analogy. Each reinforced concrete element is analyzed with the modified compression field theory (MCFT) to take into account for compression softening and tension stiffening effects in cracked reinforced concrete. Considering analysis results of reinforced concrete elements, equilibrium, and compatibility on the section are checked. For verification of the developed analysis procedure, analytical predictions were compared with test results of 16 reinforced concrete beams subjected to a pure torsional load which are available in the literature. Comparison between predicted and experimentally obtained torque-twist responses showed that the proposed procedure is capable of capturing the ultimate torsional capacity as well as the angle of twist within a reasonable range.


2015 ◽  
Vol 1106 ◽  
pp. 164-167 ◽  
Author(s):  
Radek Hajek ◽  
Martin Kovar ◽  
Marek Foglar ◽  
Jiri Pachman ◽  
Jiří Štoller

This paper follows the line of contributions from earlier conferences and informs about more results of experimental program focused on the resistance of plain and fibre reinforced concrete elements against adjacent and contact blast. Concurrently, a detailed analysis of element response is carried out using ultra high speed cameras.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1510-1526 ◽  
Author(s):  
Rafał Sieńko ◽  
Mariusz Zych ◽  
Łukasz Bednarski ◽  
Tomasz Howiacki

This article presents laboratory tests, with the purpose being to verify the suitability of standard optical fibres in a tight jacket for advanced strain analysis within concrete members. An optical reflectometer was used to enable the optical signal to be processed on the basis of the Rayleigh scattering phenomenon, so that strains and/or temperature changes were determined along the length of the measuring fibre. The measurements were carried out continuously in a geometrical sense (distributed measurements), with a spatial resolution starting from as fine as 5 mm. The arrangement of optical fibres inside the heterogeneous concrete medium and on its surface allowed for the identification and detailed analysis of local phenomena such as cracks. Remote and early location of structural damage with an estimation of its scale provides new opportunities for the monitoring of the structural health of reinforced concrete structures, facilitating the interpretation of its behaviour as well as failure risk management based on comprehensive and reliable measurement data. If traditional spot techniques are used, this approach is not possible. The aim of the initial studies was to analyse the strain distributions over compressed and tensioned measurement sections located on the surface of a cylindrical specimen of concrete. In the tests which followed, the reinforced concrete rod was eccentrically tensioned with fibre optics installed inside. Qualitative and quantitative verification of crack widths was made, with a narrow range up to 0.05 mm and a wider one to 0.30 mm. The results of the studies show very good accuracy of optical fibre sensor technology as a reference technique during the analysis of microcracks and narrow cracks, and moderate accuracy in the case of wider cracks. Despite using optical fibres in a tight jacket which mediates in strain transfer, the results obtained can be very suitable for the assessment of the structural condition of the member under consideration. It is also worth noting that the tests conducted indicate the effectiveness of distributed optical fibre technology for the analysis of concrete homogeneity and its structural behaviour within compressed areas, as it is possible to calculate strains over measuring bases that start from lengths as short as 5 mm.


2021 ◽  
Author(s):  
Guillermo Yorel Noriega Aquise

A technical design is developed to attend and assist populations in need of single-family housing and for populations in post-emergency situations. It exposes a production process of precast reinforced concrete elements, to be produced in a small production plant or at the site, with a minimum of equipment and tools. It is intended to establish a low-cost single-family house construction system with pre-fabricated reinforced concrete elements, which will become a technological alternative to traditional confined masonry construction. It presents a production line of six types of houses. For the comparison, a methodological process is followed, the comparison is made between the process of building houses with precast concrete elements and with the building process by confined masonry, the traditional process most used in Peru. The dominant principle of comparison is the equality of the useful surface of the rooms. The outstanding and visual difference is in the thickness of the walls, in the prefabricated house it is 0.10 meters and in the houses with confined masonry it is 0.15 m. The costs, production times and assembly, of the building with prefabricated elements, is low, compared to the building process by confined masonry. An in-line production process is established, of prefabricated elements with minimal equipment. The basic criterion is to manufacture that does not exceed the capacity of the size of the manufacturing, transport and assembly equipment. A simple process for the assembly was examined, a minimum period of construction of a prefabricated house of 2 hours was determined at any time of the year. The lowest cost, the direct cost has been achieved in VUF 04 at $ 264.50 US dollars per square meter and in total costs of $ 374.54 US dollars per square meter.


Author(s):  
Olivia Mirza ◽  
Andrew Talos ◽  
Matthew Hennessy ◽  
Brendan Kirkland

Currently most railway bridges in Australia require the replacement of the timber transoms that reside in the railway system. Composite steel and precast reinforced concrete transoms have been proposed as the replacement for the current timber counterparts. This paper outlines the structural benefits of composite steel-concrete transoms for ballastless tracks when retrofitted to existing railway steel bridges. However, in existing studies, it is found that there is little investigation into the effect of derailment loading on reinforced concrete transoms. Therefore, this paper provides an investigation of derailment impact loading on precast reinforced concrete transoms. The paper herein investigates the derailment impact loading of a train through experimental testing and numerical analysis of conventional reinforced concrete transoms. The paper also evaluates the potential use of 3 different shear connectors; welded shear studs, Lindapter bolts and Ajax bolts. The results of the experimental tests and finite element models are used to determine whether each transom is a viable option for the replacement of the current timber transoms on the existing bridges in Australia and whether they provide a stronger and longer lasting solution to the current transom problem.


Sign in / Sign up

Export Citation Format

Share Document