Restoration of a historic reinforced concrete structure with Ultra-High Performance Fiber Reinforced Concrete

Author(s):  
Borja Herraiz ◽  
Henar Martin-Sanz ◽  
Nadja Wolfisberg

<p>The historic building "Du Pont" in Zurich, Switzerland, was constructed between 1912 and 1913 by the Swiss architects Haller &amp; Schindler and it is listed as a cultural heritage object, including not only the Art Deco façade, but also the ground-breaking structure of reinforced concrete. The building includes several structural particularities, such as the slender, reinforced concrete, one-way ribbed slabs, a reinforced concrete truss structure in the roof hanging four floors and three transfer beams on the ground floor diverting the loads from the seven upper floors. This paper presents a detailed description of the different strengthening measures required to allow a more flexible use of the existing floors with larger live and dead loads, and to fulfil the current provisions of the Swiss Standards (SIA). The main objective of the proposed restoration and strengthening measures is to minimize the interventions as much as possible and preserve the original structural system. Of particular interest is the innovative solution adopted for the existing ribbed slabs. The required increase of resistance is obtained through a thin 40 mm overlay of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) above the carefully prepared existing slab. Due to the significance of the building and the particular characteristics of the existing concrete, experimental tests were conducted. Four specimens of the ribbed slabs were extracted from the building, strengthened on site with UHPFRC and transported to the structural laboratory of the Swiss Federal Institute of Technology in Zürich (ETHZ), where the tests were conducted. The excellent results confirmed the suitability of the proposed strengthening solution through UHPFRC, setting a milestone for future restorations of these particular structures.</p>

Author(s):  
Igor Chilin ◽  

Приведены результаты исследований и выполнена оценка влияния технологических факторов на реологические свойства самоуплотняющихся сталефибробетонных смесей, определены кратковременные и длительные физико-механические и деформативные характеристики сверхвысокопрочного сталефибробетона, включая определение его фактической морозостойкости.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2017 ◽  
Vol 52 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Duy-Liem Nguyen ◽  
Duc-Kien Thai ◽  
Dong-Joo Kim

This research investigated the effects of direct tensile response on the flexural resistance of ultra-high-performance fiber-reinforced concretes by performing sectional analysis. The correlations between direct tensile and flexural response of ultra-high-performance fiber-reinforced concretes were investigated in detail for the development of a design code of ultra-high-performance fiber-reinforced concrete flexural members as follows: (1) the tensile resistance of ultra-high-performance fiber-reinforced concretes right after first-cracking in tension should be higher than one-third of the first-cracking strength to obtain the deflection-hardening if the ultra-high-performance fiber-reinforced concretes show tensile strain-softening response; (2) the equivalent bottom strain of flexural member at the modulus of rupture is always higher than the strain capacity of ultra-high-performance fiber-reinforced concretes in tension; (3) the softening part in the direct tensile response of ultra-high-performance fiber-reinforced concretes significantly affects their flexural resistance; and (4) the moment resistance of ultra-high-performance fiber-reinforced concrete girders is more significantly influenced by the post-cracking tensile strength rather than the tensile strain capacity. Moreover, the size and geometry effects should be carefully considered in predicting the moment capacity of ultra-high-performance fiber-reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document