scholarly journals Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams

2019 ◽  
Vol 5 (1) ◽  
pp. 209 ◽  
Author(s):  
Waleed A. Jasim ◽  
Abbas A. Allawi ◽  
Nazar Kamil Ali Oukaili

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).

Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


2019 ◽  
Vol 9 (17) ◽  
pp. 3637
Author(s):  
Haitao Chen ◽  
Lai Wang ◽  
Jitao Zhong

The optimal strut-and-tie models (STMs) of two typical irregular concrete deep beams were constructed using evolutionary structural optimization and compared with those of previous studies. The reinforced concrete deep beam specimens were cast according to the reinforcement designs guided by different STMs. Eight irregular concrete deep beam specimens were experimentally investigated under stepped loading, and the differences in the amount of steel used, the load-carrying capacity, and the failure pattern of the different specimens were analyzed. The results show that the optimal STMs proposed in this study have significant advantages in terms of cost-effectiveness and can simultaneously ensure the load-carrying capacity, delay the crack propagation of irregular concrete deep beams, and reduce the amount of steel used in structural members. Therefore, they have an important engineering application value for the reinforcement design of irregular concrete deep beams.


2021 ◽  
Vol 353 ◽  
pp. 01013
Author(s):  
Tingwei Wang

Finite element method and fiber model method were used to calculate the load-carrying capacity of the specimens. Based on the experimental and theoretical analysis, simplified calculation method of the load-carrying capacity for this kind of member is proposed. It indicates that finite element method result is relatively small, fiber model method result accords well with the experimental result. Circular reinforced concrete members covered with steel tube presents both the characteristics of reinforced concrete and concrete filled steel tube member, showing higher load-carrying capacity and greater deformability. The load-carrying capacity of circular reinforced concrete members covered with steel tube can be calculated by the means of the method of reinforced concrete member with confined concrete. The result predicted by the simplified method is in good agreement with the experimental result.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 101 ◽  
Author(s):  
Piotr Smarzewski

The article presents the results of experimental- and analytical investigations of the behaviour and the load-carrying capacity of deep beams with openings (DBO) and without openings (DB) made of hybrid steel-polypropylene fibre-reinforced high-performance concrete (HFRHPC) subjected to three-point bending tests. Six deep beams 100 mm × 500 mm × 1000 mm were tested with a gradually increasing load until failure. All the specimens were tested in the same simply supported conditions. The research focused on the quantity and kind of concrete reinforcement. The deep beams with steel and polypropylene (PP) fibres were characterised by variously arranged steel bar reinforcement: vertically, horizontally, orthogonally and diagonally. The DB1, DBO1 deep beams were conventionally made with steel rod reinforcement but without fibres. The steel wire mesh reinforcement was replaced by fibre reinforcement of varying volume percentages in the remaining deep beams. The influence of the hybrid fibre content in the specimens was studied by marking the development and propagation of cracks, by recording the failure modes, and by monitoring the deflections at the bottom of the deep beam, at the mid-span and at the support. Three-dimensional measurements of strain and displacement of the deep beams without openings (DB) were performed by the non-contact optical 3D deformation measuring system ARAMIS. The experimental results were compared with the studied methods of predicting the shear strength of deep beams reinforced with hybrid fibre. The conducted study demonstrates that hybrid fibres as web reinforcement have a favourable impact on deep beam crack widths and raise the load carrying capacity of deep beams with openings.


2020 ◽  
Vol 24 (5) ◽  
pp. 77-91
Author(s):  
Mohammad Javad Memar ◽  
Ali Kheyroddin ◽  
Ali Hemmati

Engineered cementitious composite (ECC) can be used for strengthening of concrete columns due to its similar structure and suitable connection to normal concrete and its special tension behavior. In this study, to analyse the columns, finite element (FE) method was used after verification by experimental results. Reference column was strengthened by normal concrete and ECC jacketing. The effects of type of jacket material, longitudinal reinforcement, compressive stress and ultimate tensile strain of ECC on variations of eccentric load-bending moment (P-M) interaction curves were investigated. Results showed that the use of ECC instead of normal concrete can increase load carrying capacity of strengthened column, due to tensile strain hardening behavior of this material. It was found that, amount of this increase depends on eccentricity of eccentric load and varying from 0.4-23%. In ECC jacketing, tensile cracks are continuous, but in concrete jacketing, there were discrete cracks and more quantity of damages. Due to higher load carrying capacity and better distribution of tensile cracks in ECC jacketing than normal concrete jacketing, the use of ECC is suitable for strengthening of reinforced concrete columns. Load carrying capacity of columns under concentric load and pure bending moment were calculated by theoretical method and the results were compared with FE.


2018 ◽  
Vol 12 (8) ◽  
pp. 179 ◽  
Author(s):  
Shereen K. H. Hassan ◽  
Mu`tasim S. Abdel-Jaber ◽  
Maha Alqam

Reinforced concrete structures that incorporates deep beams are generally susceptible to deterioration due to weathering effects and sulphur attacks, under-design in the detailing of concrete cover and/or reinforcement, and construction errors. In lieu of demolishing and replacing these structures, rehabilitation and strengthening using carbon fiber composites becomes a cost-effective viable alternative. Recent advances in research and innovation have introduced concrete repair and strengthening systems that are primarily based on fiber reinforced polymer composites. These systems have offered engineers the opportunity to provide additional stability to the structural elements in question and to restore the damaged portions back to their original load carrying capacity.  This paper investigates the effect of Carbon Fiber Reinforced Polymer (CFRP) composites in enhancing the flexural performance of damaged reinforced concrete deep beams. Two types of CFRP composites and epoxy were used in the experimental investigation carried out and as described by this paper: 1) high strength carbon fiber reinforced polymer (CFRP) plates, commercially known as MBrace Laminate, that are bonded using an epoxy resin specifically suited for the installation and used to strengthen existing structural members; and, 2) MBrace Fiber 230/4900, a 100% solids, low viscosity epoxy material that is used to encapsulate MBrace carbon, glass, and aramid fiber fabrics so that when it cures, it provides a high performance FRP sheet.Test samples were divided into four groups: A control group, and three rehabilitated test groups with CRFP fibers, where the main variable among them was the percent length of CRFP used along the bottom beam extreme surface between supports (i.e, for two of the groups reinforced with MBrace laminates), and the use of MBrace Fiber 230/4500 CRFP sheets on the 4th beam along its vertical sides as well as the bottom extreme face between supports. All beams had similar cross-sectional dimensions and reinforcement, and were designed to fail in flexure rather than shear. The results show that CFRP composites, both laminated and sheet type, have increased the load carrying capacity in comparison to the control specimen, where observations were recorded pertaining to the delayed formation of vertical flexural cracks at the section of maximum moment, and diagonal shear cracks at beam ends. The increase in the load carrying capacity varied among the three rehabilitated test group beams, with the 4th group showing the highest ultimate load carrying capacity when compared to the control specimen. 


2014 ◽  
Vol 13 (3) ◽  
pp. 127-134
Author(s):  
Krystyna Nagrodzka-Godycka ◽  
Anna Knut ◽  
Kamila Zmuda-Baszczyn

The paper presents the results of experimental study carried out by authors on the deep beams with cantilever which was loaded throughout the depth. The main deep beam was directly simply supported on the one side. On the other side the deep beam was suspended in another deep member situated at right angles. All deep beams created a spatial arrangement. The tested deep beams were reinforced orthogonally. Crack patterns and the mode of the failure as well shear concrete were analyzed for their influence on load carrying capacity of the deep beams.


2021 ◽  
Vol 21 (2) ◽  
pp. 53-61
Author(s):  
Mohammed F. Ojaimi

A large number of RC structures or at least some of their members need strengthening or rehabilitation. Among the typical failure modes, the shear failure is more dangerous and less predictable, because of usually brittle behavior and sudden collapse. Therefore, there are necessities for upgrading the shear capacity and the local ductility of reinforced concrete beams. In this study, four different techniques of concrete jacketing were used to improve the behaviors of the shear deficiencies beams. The four techniques used in this study to enhance the behavior of the beams were by using a Self-Compacted Fiber Reinforced Concrete jacket without stirrups (S.-J. + Steel Fiber), a concrete jacket of Self Compacted Concrete with stirrups (S.-J. + Stirrups), a concrete jacket of ferrocement jacket (S.-J. + Ferrocement), and a concrete jacket of ferrocement jacket with external steel reinforcing bars (S.-J. + Ferrocement + R). These techniques contributed to enhancing the load-carrying capacity and delaying the appearance of the first crack in tested beams compared with the control beam by a percentage of (35, 59, 30, 6) % and (18, 35, 81, 80) %, respectively. The specimen (S.-J. + Stirrups) showed the best performance in comparison with the other used strengthening techniques used in this study in terms of stiffness and the ultimate load-carrying capacity. The ferrocement jacket (S.-J. + Ferrocement) was found to be the most suitable jacketing system used to enhance the shear capacity in terms of cracking load.


2013 ◽  
Vol 594-595 ◽  
pp. 516-520 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Hock Tian Cheng

The urgent need for a web opening in the pretensioned inverted T-beams after the construction for essential services causes local cracking around the opening which leads to decrease in stiffness and load carrying capacity. Therefore, strengthening the vicinity of the opening is essential to restore the loss in load carrying capacity of the beam using GFRP. To study the deflection of pretentioned inverted T-beam with web opening, three-dimensional finite element beam models are developed before and after GFRP strengthening using the finite element analysis (FEA). Modeling methodology and nonlinear analysis approach in ANSYS are presented. The results obtained from the FEA beam model are compared with the test data in terms of load-deflection curve. It has been concluded that FEA models are good representations for GFRP strengthened beams with web openings in terms of the number of elements, structural details, and, especially, reasonably accurate results in general.


Sign in / Sign up

Export Citation Format

Share Document