scholarly journals MOLECULAR MECHANISMS OF SUPPRESSION OF THE PROGRESSION OF FUS PROTEINOPATHY IN THE NERVOUS SYSTEM OF TRANSGENIC MICE

Author(s):  
Ekaterina Lysikova
2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


2021 ◽  
Vol 22 (3) ◽  
pp. 1448
Author(s):  
Jessica Aijia Liu ◽  
Jing Yu ◽  
Chi Wai Cheung

Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Fan Xia ◽  
Yonju Ha ◽  
Shuizhen Shi ◽  
Yi Li ◽  
Shengguo Li ◽  
...  

AbstractThe retina, as the only visually accessible tissue in the central nervous system, has attracted significant attention for evaluating it as a biomarker for neurodegenerative diseases. Yet, most of studies focus on characterizing the loss of retinal ganglion cells (RGCs) and degeneration of their axons. There is no integrated analysis addressing temporal alterations of different retinal cells in the neurovascular unit (NVU) in particular retinal vessels. Here we assessed NVU changes in two mouse models of tauopathy, P301S and P301L transgenic mice overexpressing the human tau mutated gene, and evaluated the therapeutic effects of a tau oligomer monoclonal antibody (TOMA). We found that retinal edema and breakdown of blood–retina barrier were observed at the very early stage of tauopathy. Leukocyte adhesion/infiltration, and microglial recruitment/activation were constantly increased in the retinal ganglion cell layer of tau transgenic mice at different ages, while Müller cell gliosis was only detected in relatively older tau mice. Concomitantly, the number and function of RGCs progressively decreased during aging although they were not considerably altered in the very early stage of tauopathy. Moreover, intrinsically photosensitive RGCs appeared more sensitive to tauopathy. Remarkably, TOMA treatment in young tau transgenic mice significantly attenuated vascular leakage, inflammation and RGC loss. Our data provide compelling evidence that abnormal tau accumulation can lead to pathology in the retinal NVU, and vascular alterations occur more manifest and earlier than neurodegeneration in the retina. Oligomeric tau-targeted immunotherapy has the potential to treat tau-induced retinopathies. These data suggest that retinal NVU may serve as a potential biomarker for diagnosis and staging of tauopathy as well as a platform to study the molecular mechanisms of neurodegeneration.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Inazumi ◽  
K Kuwahara ◽  
Y Kuwabara ◽  
Y Nakagawa ◽  
H Kinoshita ◽  
...  

Abstract Background In the development of heart failure, pathological intracellular signaling reactivates fetal cardiac genes, which leads to maladaptive remodeling and cardiac dysfunction. We previously reported that a transcriptional repressor, neuron restrictive silencer factor (NRSF) represses fetal cardiac genes and maintains normal cardiac function under normal conditions, while hypertrophic stimuli de-repress this NRSF mediated repression via activation of CaMKII. Molecular mechanisms by which NRSF maintains cardiac systolic function remains to be determined, however. Purpose To elucidate how NRSF maintains normal cardiac homeostasis and identify the novel therapeutic targets for heart failure. Methods and results We generated cardiac-specific NRSF knockout mice (NRSF cKO), and found that these NRSF cKO showed cardiac dysfunction and premature deaths accompanied with lethal arrhythmias, as was observed in our previously reported cardiac-specific dominant-negative mutant of NRSF transgenic mice (dnNRSF-Tg). By cDNA microarray analysis of dnNRSF-Tg and NRSF-cKO, we identified that expression of Gnao1 gene encoding Gαo, a member of inhibitory G proteins, was commonly increased in ventricles of both types of mice. ChIP-seq analysis, reporter assay and electrophoretic mobility shift assay identified that NRSF transcriptionally regulates Gnao1 gene expression. Genetic Knockdown of Gαo in dnNRSF-Tg and NRSF-cKO by crossing these mice with Gnao1 knockout mice ameliorated the reduced systolic function, increased arrhythmogenicity and reduced survival rates. Transgenic mice expressing a human GNAO1 in their hearts (GNAO1-Tg) showed progressive cardiac dysfunction with cardiac dilation. Ventricles obtained from GNAO1-Tg have increased phosphorylation level of CaMKII and increased expression level of endogenous mouse Gnao1 gene. These data suggest that increased cardiac expression of Gαo is sufficient to induce pathological Ca2+-dependent signaling and cardiac dysfunction, and that Gαo forms a positive regulatory circuit with CaMKII and NRSF. Electrophysiological analysis in ventricular myocytes of dnNRSF-Tg revealed that impaired Ca2+ handling via alterations in localized L-type calcium channel (LTCC) activities; decreased T-tubular and increased surface sarcolemmal LTCC activities, underlies Gαo-mediated cardiac dysfunction. Furthermore, we also identified increased expression of Gαo in ventricles of two different heart failure mice models, mice with transverse aortic constriction and mice carrying a mutant cardiac troponin T, and confirmed that genetic reduction of Gαo prevented the progression of cardiac dysfunction in both types of mice. Conclusions Increased expression of Gαo, induced by attenuation of NRSF-mediated repression forms a pathological circuit via activation of CaMKII. This circuit exacerbates cardiac remodeling and progresses heart failure by impairing Ca2+ homeostasis. Gαo is a potential therapeutic target for heart failure. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Grants-in –Aid for Scientific Research from the Japan Society for the Promotion of Science


e-Neuroforum ◽  
2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Jens Rettig ◽  
David R. Stevens

AbstractThe release of neurotransmitters at synapses belongs to the most important processes in the central nervous system. In the last decades much has been learned about the molecular mechanisms which form the basis for this fundamental process. Highly regulated exocytosis, based on the SNARE (soluble N-ethylmaleimide-sensitive attachment protein receptor) complex and its regulatory molecules is the signature specialization of the nervous system and is shared by neurons and neuroendocrine cells. Cells of the immune system use a similar mechanism to release cytotoxic materials from secretory granules at contacts with virally or bacterially infected cells or cancer cells, in order to remove these threats. These contact zones have been termed immunological synapses in reference to the highly specific targeted exocytosis of effector molecules. Recent findings indicate that mutations in SNARE or SNARE-interacting proteins are the basis of a number of devastating immunological diseases. While SNARE complexes are ubiquitous and mediate a wide variety of membrane fusion events it is surprising that in many cases the SNARE proteins involved in immunological synapses are the same molecules which mediate regulated exocytosis of transmitters and hormones in neurons and neuroendocrine cells. These similarities raise the possibility that results obtained at immunological synapses may be applicable, in particular in the area of presynaptic function, to neuronal synapses. Since immunological synapses (IS) are assembled and disassembled in about a half an hour, the use of immune cells isolated from human blood allows not only the study of the molecular mechanisms of synaptic transmission in human cells, but is particularly suited to the examination of the assembly and disassembly of these “synapses” via live imaging. In this overview we discuss areas of similarity between synapses of the nervous and immune systems and in the process will refer to results of our experiments of the last few years.


2008 ◽  
Vol 17 (6) ◽  
pp. 1103-1116 ◽  
Author(s):  
Samuel McLenachan ◽  
Yona Goldshmit ◽  
Kerry J. Fowler ◽  
Lucille Voullaire ◽  
Timothy P. Holloway ◽  
...  

2000 ◽  
Vol 95 (1-2) ◽  
pp. 23-34 ◽  
Author(s):  
Johannes Beckers ◽  
Alicia Caron ◽  
Martin Hrabé de Angelis ◽  
Stefan Hans ◽  
José A. Campos-Ortega ◽  
...  

2011 ◽  
Vol 20 (4) ◽  
pp. 181-188 ◽  
Author(s):  
He-Jin Lee ◽  
Ji-Eun Suk ◽  
Kyung-Won Lee ◽  
Seung-Hwa Park ◽  
Peter C. Blumbergs ◽  
...  

2013 ◽  
Vol 141 (1) ◽  
pp. 27-31
Author(s):  
Yoshiki Yanagawa ◽  
Yasunori Kubo ◽  
Machiko Matsumoto ◽  
Hiroko Togashi

2021 ◽  
Vol 40 (4) ◽  
pp. 13-24
Author(s):  
Igor V. Litvinenko ◽  
Igor V. Krasakov

The involvement of the nervous system in the pathological process that occurs when COVID-19 is infected is becoming more and more obvious. The question of the possibility of the debut or progression of the already developed Parkinsonism syndrome in patients who have undergone COVID-19 is regularly raised. A large number of hypotheses are put forward to explain this relationship. It is assumed that a violation of iron metabolism in the brain may underlie the development and progression of neurodegenerative diseases, including after the new coronavirus infection SARS-CoV-2. The analysis of stu dies on the possible influence of iron metabolism disorders on the occurrence and mechanism of development of neurodegenerative diseases after infection with SARS-CoV-2 has been carried out. The processes of physiological maintenance of iron homeostasis, as well as the influence of physiological aging on the accumulation of iron in the central nervous system are described. The relationship between hyperferritinemia occurring in COVID-19 and ferroptosis as the basis of the neurodegenerative process in Parkinsons disease and Alzheimers disease is discussed. The main molecular mechanisms involved in ferroptosis are described. Examples of involvement of metal homeostasis disorders in the process of altering the structure of -synuclein, synthesis of -amyloid, hyperphosphorylated tau- protein are given. The causes of excessive iron accumulation in certain brain structures are discussed. The question of the possibility of using the assessment of changes in iron metabolism as a new biomarker of the progression of Parkinsons disease is analyzed. (1 figure, bibliography: 62 refs)


Sign in / Sign up

Export Citation Format

Share Document