scholarly journals The Influence of Immediate Urban Surroundings on Energy Performance of Historical Buildings

10.29007/ghfx ◽  
2020 ◽  
Author(s):  
Onur Dursun ◽  
Feyza Durmuslar ◽  
Duhan Olmez

High-density urban areas contain large number of historical buildings whose structures and artistic values are protected by regulations. This restricts the improvements can be made to building envelope to reduce energy demand of historical buildings. Therefore, immediate urban surroundings (IUS) may play a central role on energy performance of historical buildings (EPHB). Yet, literature has provided little or no evidence, so far. To address the gap, the current experimental inquiry aims to test the significance of IUS’s influence on the EPHB. To achieve, historical structure in hot- humid climate was selected and surveyed thoroughly. Control and intervention cases were considered to measure the influence IUS. The control case corresponds to the former state of IUS; whereas the intervention described as the IUS which includes a recently built office block with reflective glass façade. The numerical result obtained from computational thermal simulations were used for comparison. Accordingly, the increase in heating demand substantially surpassed the decrease in cooling demand for the case under study. Therefore, a significant increase in total energy demand was observed in the presence of intervention. In addition, the energy performance of the individual volumes located in the lower floors presented higher fluctuations due to intervention’s shading effect.

Author(s):  
Stanley Russell ◽  
Mark Weston ◽  
Yogi Goswami ◽  
Matthew Doll

Flex House is a flexible, modular, pre-fabricated zero energy building that can be mass produced and adapted easily to a variety of site conditions and plan configurations. The key factor shaping the design is central Florida’s hot humid climate and intense solar radiation. Flex house combines the wisdom of vernacular Florida houses with state of the art Zero Energy House technologies (ZEH.) A combined system of photovoltaic panels and solar thermal concentrating panels take advantage of the region’s abundant insolation in providing clean renewable energy for the house. Conservation is achieved with state of the art mechanical systems and innovative liquid desiccant dehumidification technology along with highly efficient lighting and appliances. The hybrid nature of the Flex house allows for both an open and closed system to take advantage of the seasonal temperature variation. Central Florida buildings can conserve energy by allowing natural ventilation to take advantage of passive cooling in the mild months of the year and use a closed system to utilize mechanical cooling when temperatures are too high for passive cooling strategies. The building envelope works equally well throughout the year combining an optimum level of insulation, resistance to air infiltration, transparency for daylight, and flexibility that allows for opening and closing of the house. Flex House is designed with a strong connection between interior spaces and the outdoors with carefully placed fenestration and a movable wall system which enables the house to transform in response to the temperature variations throughout the year. The house also addresses the massive heat gain that occurs through the roof, which can generate temperatures in excess of 140 degrees. Flex House incorporates a parasol-like outer structure that shades the roof, walls and courtyard minimizing heat gain through the building envelope. To be implemented on a large scale, ZEH must be affordable for people earning a moderate income. Site built construction is time consuming and wasteful and results in higher costs. Building homes in a controlled environment can reduce material waste, and construction costs while increasing efficiency. Pre-fabricating Flex House minimizes preparation time, waste and safety concerns and maximizes economy, quality control, efficiency and safety during the construction process. This paper is an account of the design and construction of Flex House, a ZEH for central Florida’s hot humid climate.


Author(s):  
Darija Gajić ◽  
Erdin Salihović ◽  
Nermina Zagora

Yielding from an overall quantitative study of the residential sector of Bosnia and Herzegovina (B&H), this chapter concentrates on the ratio between single-family and collective housing, as well as on the urban-rural ratio of the single-family housing. Based on the data from the existing building stock (buildings built by 2014) and the statistical estimates, 23% of the buildings belong to the urban areas and 77% belong to the rural areas. The main goal was to study the correlation between the characteristics of the building envelope, the shape factor (A/V ratio) and the energy savings potential for the application of conventional measures of refurbishment of the building envelope of the single-family houses (type of buildings, which dominate in rural and urban areas). The chapter wraps up with recommendations for the adequate level of the energy performance indicator (energy need for heating) for the approved energy class for single-family houses located in the climate zone of the northern B&H.


Buildings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 189 ◽  
Author(s):  
Javanroodi ◽  
M.Nik

Urbanization trends have changed the morphology of cities in the past decades. Complex urban areas with wide variations in built density, layout typology, and architectural form have resulted in more complicated microclimate conditions. Microclimate conditions affect the energy performance of buildings and bioclimatic design strategies as well as a high number of engineering applications. However, commercial energy simulation engines that utilize widely-available mesoscale weather data tend to underestimate these impacts. These weather files, which represent typical weather conditions at a location, are mostly based on long-term metrological observations and fail to consider extreme conditions in their calculation. This paper aims to evaluate the impacts of hourly microclimate data in typical and extreme climate conditions on the energy performance of an office building in two different urban areas. Results showed that the urban morphology can reduce the wind speed by 27% and amplify air temperature by more than 14%. Using microclimate data, the calculated outside surface temperature, operating temperature and total energy demand of buildings were notably different to those obtained using typical regional climate model (RCM)–climate data or available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 21%, respectively. The difference in the hourly peak demand during extreme weather conditions was around 13%. The impact of urban density and the final height of buildings on the results are discussed at the end of the paper.


Heliyon ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. e02077 ◽  
Author(s):  
M.Z. Kandar ◽  
P.S. Nimlyat ◽  
M.G. Abdullahi ◽  
Y.A. Dodo

2019 ◽  
Vol 38 (1) ◽  
pp. 192-216
Author(s):  
Khadidja El-Bahdja Djebbar ◽  
Souria Salem ◽  
Abderrahmane Mokhtari

Purpose The purpose of this paper is to analyze energy performance of the multi-storey buildings built in the city of Tlemcen between 1872 and 2016. Design/methodology/approach A diagnosis based on a bottom-up methodology, using statistical techniques and engineering, has been developed and applied. To do this, demand condition analysis was conducted using a data collection survey on a sample of 100 case studies. Physical characteristics of the buildings have been determined through the archetype by period. This serves to define the strengths and weaknesses of buildings as energy consumers. Findings The obtained results showed that dwellings built between 1872 and 1920 offer better energy performance with a consumption index close to 130kWh/m2/year and this compared to the five periods considered. For dwellings built between 1974 and 1989, energy consumption is higher with an index approaching 300kWh/m2/year, thus qualifying the buildings of this period as energy intensive. Originality/value A database is established to collect physical information on the existing housing stock and thus allow their classification vis-à-vis of the energy label. This study is part of a research project aimed at evaluating and determining optimal measures for energy rehabilitation of multi-family buildings in Tlemcen. Thermal rehabilitation solutions are proposed using thermal simulations, in the following studies, to improve thermal performance of existing buildings. This study constitutes the first step of a roadmap applicable to other cities constituting climatic zones in Algeria. This helps to enrich the Algerian thermal regulation in thermal rehabilitation of existing residential buildings and conception of new ones, in urban areas with a similar climate.


2015 ◽  
Vol 789-790 ◽  
pp. 1181-1184
Author(s):  
Michal Kraus ◽  
Kateřina Kubeková ◽  
Darja Kubečková

The main objective of the paper is to confirm or exclude a statistically significant impact of airtightness on the energy performance of buildings. Energy performance of buildings is characterized by a specific energy demand for heating and specific total primary energy. Airtightness is one of the key factors of energy efficient buildings. The quality of airtight building envelope except for low energy consumption also minimizes the risk of damage to the structure associated with the spread of the heat and water vapor in the structure.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Maryam Qays Oleiwi ◽  
Mohd Farid Mohamed

Past years have witnessed the popularity of traditional Malay house as a common housing type in Malaysia. However, double-storey house has become one of the common types of low-rise housing in Malaysia. Several passive cooling strategies have been adopted to cope with the hot-humid climate of Malaysia. In this study, the thermal comfort of a double-storey house was examined when different passive cooling strategies that were adopted from traditional Malay houses were applied using IES-VE 2019 building simulation software. The simulation was conducted for various design strategies such as changing concrete roof tiles to clay roof tiles, adding two small openings to the attic, removing the ceiling between the upper floor and the attic, and extending the overhang by 50% of its length for all the four facades. All these strategies were tested and compared between full-day natural ventilation and without any ventilation. The thermal comfort of these strategies was graphically defined based on the operative temperature. These analyses revealed that protecting the building envelope by extending the overhang by 50% of its length for all the four facades could ensure the best thermal comfort is achieved compared to other selected strategies. Recommendations for further studies are also outlined in this paper.


Sign in / Sign up

Export Citation Format

Share Document