Estimate of Energy Performance Indicator of Existing Single-Family Houses in Bosnia and Herzegovina

Author(s):  
Darija Gajić ◽  
Erdin Salihović ◽  
Nermina Zagora

Yielding from an overall quantitative study of the residential sector of Bosnia and Herzegovina (B&H), this chapter concentrates on the ratio between single-family and collective housing, as well as on the urban-rural ratio of the single-family housing. Based on the data from the existing building stock (buildings built by 2014) and the statistical estimates, 23% of the buildings belong to the urban areas and 77% belong to the rural areas. The main goal was to study the correlation between the characteristics of the building envelope, the shape factor (A/V ratio) and the energy savings potential for the application of conventional measures of refurbishment of the building envelope of the single-family houses (type of buildings, which dominate in rural and urban areas). The chapter wraps up with recommendations for the adequate level of the energy performance indicator (energy need for heating) for the approved energy class for single-family houses located in the climate zone of the northern B&H.

2021 ◽  
Vol 246 ◽  
pp. 05004
Author(s):  
Triinu Bergmann ◽  
Aime Ruus ◽  
Kristo Kalbe ◽  
Mihkel Kiviste ◽  
Jiri Tintera

The Energy Performance of Buildings Directive (EPBD) of the EU states that Each Member State shall establish a long-term renovation strategy to support the renovation of building stock into a highly energy efficient and decarbonised building stock by 2050. The motive for the study was the dissatisfaction of inhabitants of a single-family building about the heating costs and thermal discomfort. In this study both the emotional and resource efficiency aspects were considered. The structures and technical systems of the studied small dwelling are typical of representing single-family buildings of the Estonian building stock. The initial purpose was to improve the energy efficiency of a building while preserving the existing load bearing structures as much as possible. The research questions were: 1) what the situation before the renovation was, 2) what solutions can be used, 3) making decisions, whether to renovate or demolish. Calculations were carried out – the thermal transmittance of the envelope structures was calculated based on the construction information, and the linear thermal transmittance of geometrical thermal bridges was calculated by using the software Therm. Field tests performed - the thermography and the air leakage of the building was found by standard blower-door test. Specific air leakage rate qE50=11.1 m3/(hm2) was estimated. A renovation solution was offered considering the need for extra insulation and airtightness. The dwelling energy performance indicator was reduced from the existing 279 kWh/(m2y) to 136 kWh/(m2y). For significant energy efficiency improvement deep renovation measures must be used and the question was whether it is rational. Before making the final decision, several aspects have to be considered: 1) emotional – the demolition or renovation of somebody’s home, 2) environmental aspects and resource-efficiency – the possibilities of the reuse of materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-180
Author(s):  
Katerina Petrushevska

AIM: This research examines the important issue of energy efficient improvements to the existing building stock through building envelope upgrade. To facilitate this, the energy performance characteristics of the existing building stock were identified with a view to establishing an existing building stock type, where building envelope upgrades can contribute to a higher level of energy efficiency improvements. The literature review along with the selected building precedents was used to establish the best current practice for building envelope upgrades.MATERIAL AND METHODS: Established building precedents and identified best practice for building envelope upgrade, a high rise block of flats was identified and used as a case study, with the current and predicted, following building envelope upgrade, energy performance of the building calculated. This has allowed us to identify the possible energy efficiency improvements for this type of building following the building envelope upgrade. RESULTS: In the projected case, the building with energy class - "D" become class "B". In addition, increased quality of the living room in the attic was enabled. It was possible to obtain a decrease of the heating energy from 130.76 kWh/m²a to 37.73 kWh/m²a or to jump in the class "B" of energetic passport.CONCLUSION: This research contributes to the local implementation of the global agenda for sustainable development, design and construction, and it demonstrates the possible way and level of energy efficiency improvements to the least efficient building stock through existing building envelope upgrade.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1695-1705
Author(s):  
Dimitrije Manic ◽  
Mirko Komatina ◽  
Biljana Vucicevic ◽  
Marina Jovanovic

Energy certification of buildings in Serbia was introduced in 2011 and energy label depends on energy need for heating per unit floor area of heated space, calculated by the fully prescribed monthly quasi-steady-state method defined by ISO 13790. In the Republic of Serbia, most of families live in single-family houses built before the energy certification of buildings was introduced. Therefore, the estimation of energy performance of the existing buildings is important for labeling, and evaluation of energy saving measures and energy strategies to be implemented. This paper examines the applicability of monthly method defined by National legislation on the existing buildings stock in Serbia, by comparing it to the more accurate dynamic simulation method. Typical single-family houses are taken as a test case, since they are responsible for about 76% of energy consumption for heating. The results show that the dynamic simulation method estimates 21% to 54% higher energy need for heating, compared to the monthly method. Also, the monthly method estimates up to 13% higher savings by typical building envelope energy saving measures, compared to the dynamic simulation. This paper recommends improvement in procedures for calculation of building energy performance index to better assess energy consumption, effects of energy saving measures, and create solid background for developing and implementing of energy saving strategies.


2020 ◽  
Vol 10 (21) ◽  
pp. 7862
Author(s):  
Muhyiddine Jradi

When considering that over 80% of buildings in Denmark were built before the 1980′s, a holistic energy retrofitting of the existing building stock is a major milestone to attain the energy and environmental targets of the country. In this work, a case study of three public schools is considered for post-retrofit process evaluation. The three schools were heavily retrofitted by September 2018 with energy conservation and improvement measures that were implemented targeting both the building envelope and various energy systems. A technical evaluation of the energy retrofit process in the schools was carried out, when considering one year of operation after the completion of the retrofitting work. Actual data from the heating and electricity meters in the schools were collected and compared with the pre-retrofit design numbers which rely majorly on static tabulated numbers for savings evaluation. It was shown that the retrofit design numbers largely overestimate the attained savings, where the average performance gap between the expected and real numbers for the three schools is around 61% and 136% for annual heating and electricity savings, respectively. On the other hand, an alternative approach was proposed where calibrated dynamic energy performance models, which were developed for the three schools in EnergyPlus, were used to simulate the impact of implementing the retrofit measures. It was shown that implementing this approach could predict much better the impacts of the retrofit process with an average gap of around 17% for heating savings and 21% for electricity savings. Based on the post-retrofit process evaluation in the three schools, it was concluded that using dynamic model simulations has the potential of lowering the performance gap between the promised and real savings when compared to static tabulated approaches, although the savings are still generally over-estimated in both approaches.


2013 ◽  
Vol 361-363 ◽  
pp. 427-430 ◽  
Author(s):  
Young Sun Ko ◽  
Sang Tae No

The objective of this study is to verify energy performance of passive office building compared to existing building using computer simulation tool, EnergyPlus. S building was selected as a passive office building, which is the first passive office building in KOREA, and the building satisfy the passive house standard. The annual energy consumption data were compared to the heating and cooling load result of EnergyPlus, to verify simulation accuracy. The conditions of existing building were selected from Korean envelope standard and the categories of the conditions are the insulation thickness and glazing composition. As a result, the passive office showed 28% reduced energy consumption, compared to the existing building, with ordinary envelope under Korean building envelope standard.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 42
Author(s):  
Dragan Katić ◽  
Hrvoje Krstić ◽  
Saša Marenjak

This paper is part of broader research aimed at determining the relationship between energy performance and energy costs as a part of the operational and life cycle costs in school buildings in the Federation of Bosnia and Herzegovina (FBiH), as exceptionally important social and public buildings. The research was conducted by statistical analysis of data collected from documents of detailed energy audits (DEA) for 185 school buildings in FBiH in relation to construction periods. The paper analyzes the characteristics of buildings such as construction period, building envelope characteristics, climatic conditions, efficiency of installed space heating system, number of users and heating mode. The aim of this research was to determine the energy performance for the existing state and to compare them with the allowable values in accordance with the applicable legal regulations. There is a performance gap between predicted (calculated) and measured (actual) delivered energy for space heating. This research shows poor energy performance and provides a basis for developing strategies and plans to improve energy efficiency. The results of the energy performance of school buildings in the FBiH are the first step towards the development of a model for predicting energy costs.


2021 ◽  
Author(s):  
Anthony Guadagnoli

The objective of this Major Research Project has been to compare the benefits of cooling performance of zoned and central air conditioning systems using summer 2013 as an evaluation period. Three adjacent houses in Toronto have been studied as part of the Renovation2050 research program. Total cooling energy usage was measured directly from all cooling equipment, along with temperature and cooling energy usage was measured directly from all cooling equipment, along with temperature and relative humidity readings via remote sensors. The goal of this 1-year study was to compare the cooling energy performance of each house, temperature, and relative humidity. The study has used energy simulation, to compare zoned and central systems while accounting for weather, human occupancy, and construction types. Results have shown that there is potential for energy benefits on a zoned system compared to a central system by approximately 95% in total cooling energy use for the study period,and these results are dependent on the building envelope and user types and these results are dependent on the building envelope and user types.


Author(s):  
Giovanni Santi ◽  
Sara Battini

The introduction of vegetation in urban areas, through both green roofs and green walls, is a sustainable strategy for improving the environment and the quality of life, as well as crucial for urban biodiversity since the moment it is able to create new habitats for plant and animal species. The design and realization of green roof systems abroad is promoted and stimulated while in Italy, this subject, is still an innovation not supported by many real implementations. The application of this technological green system has a great importance for the redevelopment of existing building heritage, especially for historic buildings, to improve their energy-performance qualities, with respect for their architectural value. The aim of this study is to identify the technical issues for the realization of green roofs in urbanized contexts by focusing on the implementation of a green roof on a building of Leghorn following intervention guidelines developed. This research shows that not only does this system allow higher energy saving, but it also brings a decrease of load bearing on the structure.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012112
Author(s):  
R Moschetti ◽  
B Time ◽  
L Gullbrekken ◽  
V Heide ◽  
L Georges ◽  
...  

Abstract As the existing building stock is responsible for high energy use and greenhouse gas emissions, energy upgrading projects have been acknowledged as crucial for the energy performance improvement of existing buildings, as well as for environment preservation and rational use of resources. The aim of this article is to investigate the definition of a nearly zero-energy building (nZEB) level for the energy upgrading of single-family houses. In particular, the findings from a research project, i.e., “energy upgrading of wooden dwellings to nearly zero energy level” (OPPTRE), are presented and discussed. A core task of OPPTRE was to carry out an architectural competition, where six interdisciplinary teams proposed innovative solutions for upgrading to a nZEB level representative Norwegian wooden single-family houses, from the period 1950-1990. The upgrading measures proposed in the OPPTRE competition focused on several aspects, such as architectural quality, indoor thermal environment, energy use/generation, carbon footprint, and cost effectiveness. General principles for a nZEB level achievement in upgrading projects are discussed in this article, as deducted from the evaluation of the results of the OPPTRE architectural competition. In particular, the focus is on examining the solutions proposed for upgrading building envelope and technical building systems. Energy use, energy generation, investment costs, and CO2 emissions are examined across the various OPPTRE projects, striving to define a trade-off among different parameters for the achievement of a nZEB level. The findings of this paper support the creation of knowledge in nearly zero-energy upgrading of wooden single-family houses, aiming to a more systematic definition of a nZEB level in such projects. This can be relevant for several stakeholders, such as governmental institutions, homeowners, builders, and private or public decision makers, towards the market uptake of nZEB upgrading by 2030.


2019 ◽  
Vol 111 ◽  
pp. 06027
Author(s):  
Francesco Causone ◽  
Martina Pelle

The urbanization process is constantly increasing worldwide. Today over 50 % of the population resides in urban areas and this value is expected to grow up to 68 % by 2050. In this scenario, the development of district scale energy grids and management systems has become crucial to optimize energy use and to balance energy flows within the cities, encouraging the use of renewable sources and self-consumption. This study focusses on a district under development in the city of Milan, involving an urban area of about 920 000 m2, which, once completed, will count for about 4 500 apartments, a school and a few other commercial uses. The existing energy systems consist of an electric grid, including a small photovoltaic field, a district heating system and a local district cooling system exploiting groundwater via heat pumps. They serve, at present, seven residential tower buildings (400 apartments). The overarching aim of the research is to evolve the existing grid into a smart energy grid able to guarantee an intelligent management of the district, empowering eventually people to apply for demand-response schemes, electric mobility and other innovative services. In order to perform such an improvement and extension of the exiting grid, it is necessary to evaluate and simulate the profiles and dynamics of the final energy uses for the residential buildings, that will represent the major load on site. Since monitoring data are not yet available for the district, the evaluation of the energy performance of the existing buildings has been developed through dynamic energy simulations via the definition of profile loads of the most frequent apartment typologies, that allow, moreover, to simulate further developments in the districts. Besides, a monitoring plan for the existing systems has been developed and implemented. Monitoring data will be used at first for validating the developed load profiles; then, they will be analysed to develop optimisation algorithms for the management of the upgraded energy grid. In this paper, the case study is presented and the results of the analysis, via energy simulation, on the existing building stock are reported.


Sign in / Sign up

Export Citation Format

Share Document