scholarly journals Preparation of Indigenous Lactic Acid Bacteria Starter Cultures for Large Scale Production of Fermented Milk

2020 ◽  
Vol 2 ◽  
pp. 00010
Author(s):  
Tyas Utami ◽  
Amaralda Cindarbhumi ◽  
Marcella C. Khuangga ◽  
Endang S. Rahayu ◽  
Muhammad Nur Cahyanto ◽  
...  

<div>Lactobacillus plantarum Dad 13, an indigenous probiotic was examined its ability to be used as a single starter culture or mixed cultures with Streptococcus thermophilus Dad 11 for milk fermentation. Both cultures were isolated from dadih, a traditional fermented buffalo milk. The purposes of this study were to produce indigenous lactic acid bacteria starter cultures using halal growth medium and evaluate their application on large scale fermented milk production. The halal medium was developed using natural compounds such as sucrose, meat peptone, mung bean sprout extract, tomato extract, and young coconut water. Meat peptone was prepared by hydrolysis of halal meat using crude bromelain. Lactic acid bacteria were grown in the halal growth medium then harvested, frozen and freeze-dried. A single freeze-dried starter culture of L. plantarum Dad 13 and frozen mixed cultures of L. plantarum Dad 13 and S. thermophilus Dad 11 were prepared for production of fermented milk drink and yogurt respectively in industrial scale. The growth of these lactic acid bacteria in halal growth medium increased the viable cell to two log cycles (109 CFU/mL) for L. plantarum Dad 13 and one log cycle for S. thermophilus Dad 11 (108 CFU/mL), respectively. The viable cell of freeze-dried L. plantarum Dad 13 and S. thermophilus Dad 11 were 7.57 x 1010 CFU/g and 6.35 x 109 CFU/g, respectively. The number of viable cells and pH of both fermented milk drink and yogurt products was relatively stable to 107 CFU/mL and 108 CFU/mL, respectively during cold storage for four to six weeks. The sensory characteristics of the products were comparable to the ones using commercial starter cultures. It can be concluded that these indigenous starter cultures can be applied for the production of probiotic fermented milk.</div>

Author(s):  
Sarang Dilip Pophaly ◽  
Manorama Chauhan ◽  
Jitesh Tarak ◽  
Shekhar Banala Bashetty ◽  
Tejinder Pal Singh ◽  
...  

Lactic acid bacteria (LAB) are used as food-grade microorganisms for production of a variety of fermented milk products. They are also the most common probiotic organisms used for making functional foods. Lactic acid bacteria are well known for their fermentative metabolism wherein they convert simple carbohydrates to organic acids and other end products. Fermentation helps the bacteria to generate ATP required for various cellular activities via substrate level phosphorylation reaction. Fermentation results in incomplete oxidation of substrate and hence is an inefficient process with a low ATP yield. However, some LAB are genetically capable of activating an auxiliary respiratory metabolism in which a quinol oxidase serves as the final electron acceptor and high ATP production is achieved due to oxidative phosphorylation. The respiratory process is associated with high biomass production of LAB and more robust bacterial cells, which are essentially required for manufacture of high viability starter culture. This chapter explores LAB's current and future applications in dairy starter cultures.


2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


1988 ◽  
Vol 51 (5) ◽  
pp. 386-390 ◽  
Author(s):  
Y. A. EL-SAMRAGY ◽  
E. O. FAYED ◽  
A. A. ALY ◽  
A. E. A. HAGRASS

The traditional yogurt starter, i.e. Staphylococcus thermophilus and Lactobacillus bulgaricus, has always been used to bring about the lactic acid fermentation during manufacture of concentrated yogurt known in Egypt as “Labneh”. Different combinations of some strains of Enterococcus faecalis, isolated from Laban Rayeb (a type of fermented milk), in combination with a certain strain of Lactobacillus bulgaricus were used to produce a Labneh-like product. Chemical, microbiological and organoleptic properties of the Labneh-like product were assessed and compared to the characteristics of Labneh processed traditionally by two different dairy plants in Egypt. All treatments showed similar changes during storage at 5 ± 1°C for 28 d. Total solids, fat, titratable acidity and pH values coincided with those of Labneh. Some components increased until the seventh day, i.e. acetaldehyde and diacetyl, while other features, such as the ratio of soluble nitrogen/total nitrogen and tyrosine, increased until the fourteenth day of storage. Thereafter, no marked variations occurred. However, a decrease in tryptophan content of all products occurred during the storage period. Total viable count and count of lactic acid bacteria of Labneh-like product as well as Labneh increased until the end of the second week of storage and then decreased. Coliforms, yeasts and molds and psychrotrophic bacteria were detected in some fresh and stored samples. The starter culture which consisted of 1.5% Enterococcus faecalis 19 and 1.5% Enterococcus faecalis 22 was used successfully to manufacture a Labneh-like product with high acceptability when fresh or refrigerated at 5 ± 1°C.


2001 ◽  
Vol 64 (1) ◽  
pp. 81-86 ◽  
Author(s):  
A. OUMER ◽  
S. GARDE ◽  
P. GAYA ◽  
M. MEDINA ◽  
M. NUÑEZ

The effects of bacteriocins produced by six strains of lactic acid bacteria on 9 mesophilic and 11 thermophilic commercial starter cultures were investigated in mixed cultures of commercial starters with bacteriocin-producing strains in milk. The bacteriocins produced by the test organisms were nisin A, nisin Z, lacticin 481, enterocin AS-48, a novel enterocin, and a novel plantaricin. Mesophilic commercial starters were in most cases tolerant of bacteriocins, with only two of the starters being partially inhibited, one by four and the other by two bacteriocins. The aminopeptidase activities of mesophilic starters were generally low, and only one of the combinations of mesophilic starter–bacteriocin producer gave double the aminopeptidase activity of the starter culture without the bacteriocin producer. Thermophilic commercial starters were more sensitive to bacteriocins than mesophilic starters, with six thermophilic starters being partially inhibited by at least one of the bacteriocins. Their aminopeptidase activities were generally higher than those of the mesophilic starters. The aminopeptidase activities of seven thermophilic starters were increased in the presence of bacteriocins, by factors of up to 9.0 as compared with the corresponding starter cultures alone. Bacteriocin-producing strains may be used as adjunct cultures to mesophilic starters for the inhibition of pathogens in soft and semihard cheeses, because mesophilic starters are rather tolerant of bacteriocins. Bacteriocin producers may also be used as adjunct cultures to thermophilic starters of high aminopeptidase activity, more sensitive to lysis by bacteriocins than mesophilic starters, for the acceleration of ripening in semihard and hard cheeses.


Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261677
Author(s):  
Dorota Litwinek ◽  
Jakub Boreczek ◽  
Halina Gambuś ◽  
Krzysztof Buksa ◽  
Wiktor Berski ◽  
...  

Starter cultures composed of lactic acid bacteria (LAB) were developed based on the genotypic and phenotypic characterisation of isolates belonging to dominant groups of bacteria in spontaneous rye wholemeal sourdoughs. Combinations of strains have been evaluated on an industrial scale in the sourdough fermentation process. Wholemeal rye bread was prepared using sourdoughs obtained with 3 new starter cultures, and compared to bread made using the commercial culture (LV2). All newly developed cultures used for the preparation of wholemeal rye bread allowed to obtain better quality products as compared to the LV2 based bread. The best results were obtained when the culture containing Lactiplantibacillus plantarum 2MI8 and exopolysaccharide (EPS)-producing Weissella confusa/cibaria 6PI3 strains was applied. The addition of yeast during sourdough breads production, especially the one prepared from mentioned above starter culture, significantly improved their organoleptic properties, their volume and crumb moisture was increased, and also the crumb acidity and hardness was reduced. Fermentation of rye wholemeal dough, especially without the yeast addition, resulted in a significant reduction in the content of higher inositol phosphates as compared to the applied flour, which is associated with improved bioavailability of minerals. The results of this study prove that the investigated new starter cultures can be successfully applied in wholemeal rye bread production.


2015 ◽  
Vol 1 (1) ◽  
pp. 26-33
Author(s):  
IRA ERDIANDINI ◽  
TITI CANDRA SUNARTI ◽  
ANJA MERYANDINI

The development of industrial fermentation food could not separate with the availability of culture starter that suffice to support its production. Dried starter can be an option to use in fermentation industry because it can be stored for longer time without rejuvenation. However, in the process of production of dried starter needs the matrix to maintain cell viability, economically and availability of raw material. This research was conducted to use selected dried starter of indigenous lactic acid bacteria by using sour cassava starch matrix. Eleven local isolates lactic acid bacteria isolates from spontaneous fermentation of carbohydrates commodity were selected based on their acid production capabilities and antibiotics susceptibilities. Isolate of E 1222 showed the best result and was identified as Pediococcus pentosaceus. The isolate was encapsulated with sour cassava starch matrix for making dried starter by using freeze dryer and spray dryer. Freeze dried starter culture could maintained the cell viability higher than spray dried starter culture i.e 10.34 log CFU/g and 8.91 log CFU/g, respectively. Finally, freeze dried starter culture could maintain the percentage of cell viability until 89.38% during four-weeks storage at 4 oC. 


2021 ◽  
Vol 11 (17) ◽  
pp. 7864
Author(s):  
Emilia Janiszewska-Turak ◽  
Weronika Kołakowska ◽  
Katarzyna Pobiega ◽  
Anna Gramza-Michałowska

Nowadays, foods with probiotic bacteria are valuable and desired, because of their influence on human gut and health. Currently, in the era of zero waste, the food industry is interested in managing its waste. Therefore, the aim of the study was to determine the influence of drying process on the physicochemical properties of fermented vegetable pomace. The work included examining the influence of the lactic acid bacteria (Levilactobacillus brevis, Lactiplantibacillus plantarum, Limosilactobacillus fermentum and its mixture in the ratio 1:1:1) used for vegetable fermentation (beetroot, red pepper, carrot), obtaining pomace from fermented vegetables, and then selection of drying technique using the following methods: convection drying (CD) or freeze-drying (FD) on the physical and chemical properties of pomace. In the obtained pomace and its dried form, dry substance, water activity, color, and active substances such as betalains and carotenoids by spectrophotometric method and also bacteria concentration were evaluated. After fermentation of pomace from the same vegetable, a similar concentration of lactic acid bacteria was found as well as dry substances, color and colorants. Results of physico-chemical properties were related to the used vegetable type. After drying of pomace, it could be seen a high decrease in bacteria and colorant concentration (betalains, carotenoids) independently from drying and vegetable type as well as used starter cultures. The smallest change was observed for spontaneously fermented vegetables compared to those in which the starter culture was used.


Sign in / Sign up

Export Citation Format

Share Document