scholarly journals Characterization Chlorophytas microalgae with potential in the production of lipids for biofuels

2012 ◽  
Vol 5 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Denis-Lorena Jaimes-Duarte ◽  
Wilder Soler-Mendoza ◽  
Josman Velasco-Mendoza ◽  
Yaneth Muñoz-Peñaloza ◽  
Néstor-Andrés Urbina-Suárez

This work is part of a megaproject that seeks to isolate microalgae of the Chlorophyta division native to Norte de Santander and identify their potential applications such as lipid production to be used as biofuel. Here we present the isolation of 11 microalgae strains from the Chlorophyta division found in two different wastewater environments. The collected strains were cultivated in selective media and purified through serial dilutions, depletion culture, and application of penicillin and gentamicin. Biomass production was evaluated and two strains were selected: CHL1 (Chlorella sp.) and DES1 (Desmodesmus sp.). The strains were cultivated on wastewater and PCG media (control), and their biomass concentration and lipid content were measured. Both strains reached similar biomass concentrations compared to their respective controls (CHL1 PCG 1.5 mg/L ± 0.035 mg/L, CHL1 AR 1.68 mg/L ± 0.036, DES1 PCG 1.66 mg/L ± 0.007, DES1 AR 2 mg/L ± 0.03) and their lipid content was slightly higher compared to their controls. The results show that the isolated and evaluated strains may have potential to be lipid producers, since their environmental and nutritional conditions have not been modified yet and adaptation may improve the production yield of lipids.

2015 ◽  
Vol 71 (8) ◽  
pp. 1229-1234 ◽  
Author(s):  
Paula Peixoto Assemany ◽  
Maria Lucia Calijuri ◽  
Eduardo de Aguiar do Couto ◽  
Aníbal Fonseca Santiago ◽  
Alberto José Delgado dos Reis

The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.


BioResources ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 686-695
Author(s):  
Xun Yang ◽  
Pinghuai Liu ◽  
Zongdi Hao ◽  
Jie Shi ◽  
Sen Zhang

Fifty-three algal cultures were isolated from freshwater lakes in Hainan, China. Four microalgal isolates were selected because they could be successfully cultivated at high density and demostrated a strong fluorescence after being stained with nile red. These cultures were identified as strains of Chlorella sp. C11, Chlamydomonas reinhardtii C22, Monoraphidium dybowskii C29, and Chlorella sp. HK12 through microscopic and 18S rDNA analysis. Under similar conditions, the lipid productivity of Chlorella sp. C11, Chla. reinhardtii C22, M. dybowskii C29 , and Chlorella sp. HK12 were 1.88, 2.79, 2.00, and 3.25 g L-1, respectively. Chla. reinhardtii C22 yielded a higher lipid content (51%), with a lower biomass concentration (5.47 g dwt L-1). Chlorella sp. HK12 reached a growth rate of 0.88 day-1 at OD540nm and yielded a biomass concentration of 7.56 g dwt L-1, with a high lipid content of 43%. Gas chromatography/ mass spectrometry analysis indicated that lipid fraction mainly comprises hydrocarbons including palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acids. Our results suggest that Chlorella sp. HK12 is a promising species for biodiesel production, because of its high lipid productivity and a relatively high content of oleic acid.


2015 ◽  
Vol 2 (1) ◽  
pp. 103 ◽  
Author(s):  
Rachmawati Rusydi ◽  
Rachmawati Rusydi ◽  
Amararatne Yakupitiyage ◽  
Wenresti G Gallardo ◽  
Lionel Dabbadie ◽  
...  

Increment of industrial development and energy demands for transportation and electricity have increased diesel-fuel uses to fulfil global energy needs. Carbon emission as impact of high fossil diesel use which pollutes the air gradually increases green house gases (GHG) and increases the intensity of acid rains. Furthermore, scarcity of fossil-fuels resources has caused high price of diesel-fuel which in turn to have increased the prices of all commodities. Nostoc muscorum is filamentous Cyanobacteria species which lives both terrestrial and freshwater aquatic environment. This strain has good ability in producing high biomass and potential in producing lipid. In where, Nostoc muscorum has potential as biodiesel feedstock alternative of food-plants sources. This study was conducting to evaluate the potential of Nostoc muscorum cultured in BG-II medium as biodiesel feedstock source. Evaluation of the nutrient requirement of Nostoc muscorum cultured in BG-II medium was done through assimilation of nitrate (NaNO3)-phosphate (K2HPO4). Biomass production as growth parameter was measured by weighing the dried biomass for 14 days of culture. Daily lipid production was evaluated by lipid extraction using Soxhlet method. The result showed that Nostoc muscorum cultured in BG-II medium required 644.6795 mg/L of NO3- and 25.1566 mg/L of HPO4- with the highest biomass production 0.21 grams/300 mL. Furthermore, Nostoc muscorum as multicellular Cyanobacteria could grow well in BG-II medium at SGR 0.0964 μ/day. Lipid production of Nostoc muscorum during cultivation in BG-II for 14 days decreased day by day. The highest lipid production was reached up in day 4th of culture that was 9.53 mg/g. Based on this study, Nostoc muscorum has good potential as biodiesel feedstock through producing high biomass in BG-II medium. Keywords: Nostoc muscorum, Synechococcus elongatus, Tofu wastewater, Lipid content, Cell disruption, Biodiesel. 


Author(s):  
Bruna Da Silveira Guimarães ◽  
Kepler Borges França

This study aimed to statistically prove the influence of salinity on growth kinetics and intracellular lipid accumulation in microalgae. The species Chlorella sp., Scenedesmus acuminatus, Nannochloropsis sp., Monoraphidium contortum and Pediastrum tetras were studied, which were isolated in the Brazilian semi-arid region and cultivated in synthetic media with the addition of NaCl. From the crops, growth kinetics, dry biomass production and lipid content were analyzed, using the experimental planning for one factor as a tool, with the NaCl concentration as an independent variable. The kinetic parameters maximum growth speed (µmax) and generation time (tg), as well as lipid concentration were the response variables studied. The results showed that, in the species Scenedesmus acuminatus, Nannochloropsis sp. and Pediastrum tetras, salt stress contributed to the increase in µmax and the consequent decrease in tg. The highest levels of lipid accumulation were obtained in Nannochloropsis sp. (62.04%), in the medium with the highest salinity and Pediastrum tetras (54.04%) in the lowest. Dry biomass production was higher in Scenedesmus acuminatus (1,941.37 mg.L-1) and Nannochloropsis sp. (1237.05 mg.L-1), both at a concentration of 4.0 g.L-1. Therefore, saline stress acted directly on the cell growth and lipid content of the species, which can be used as a device to enhance lipid production for the purpose of producing biofuels.


2012 ◽  
Vol 503-504 ◽  
pp. 174-177
Author(s):  
Li Min Hao ◽  
Zheng Li ◽  
Ai Li Zhao ◽  
Wei Long Chen ◽  
Zi Tao Wang

The Fomitopsis pinicola Karst is a novel mushroom. Its exo-polysaccharide and biomass of F.pinicola Karst have widely potential applications. In this paper, effect of different nutrient components on exo-polysaccharide and biomass production was reported. The results revealed that the optimal medium for producing CEPS was (g/L): glucose 150, yeast extract 5, MgSO4•7H2O 0.8, KH2PO4 1.2. The optimal medium for biomass growth was (g/L): glucose 150, yeast extract 15, MgSO4•7H2O 0.6, KH2PO4 1.4.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2410
Author(s):  
Jean Claude Nzayisenga ◽  
Anita Sellstedt

There are numerous strains of Chlorella with a corresponding variety of metabolic pathways. A strain we previously isolated from wastewater in northern Sweden can grow heterotrophically as well as autotrophically in light and has higher lipid contents under heterotrophic growth conditions. The aims of the present study were to characterize metabolic changes associated with the higher lipid contents in order to enhance our understanding of lipid production in microalgae and potentially identify new compounds with utility in sustainable development. Inter alia, the amino acids glutamine and lysine were 7-fold more abundant under heterotrophic conditions, the key metabolic intermediate alpha-ketoglutarate was more abundant under heterotrophic conditions with glucose, and maltose was more abundant under heterotrophic conditions with glycerol than under autotrophic conditions. The metabolite 3-hydroxy-butyric acid, the direct precursor of the biodegradable plastic PHB (poly-3-hydroxy-butyric acid), was also more abundant under heterotrophic conditions. Our metabolomic analysis has provided new insights into the alga’s lipid production pathways and identified metabolites with potential use in sustainable development, such as the production of renewable, biodegradable plastics, cosmetics, and nutraceuticals, with reduced pollution and improvements in both ecological and human health.


2017 ◽  
Vol 223 ◽  
pp. 296-300 ◽  
Author(s):  
L.-D. Zhu ◽  
Z.-H. Li ◽  
D.-B. Guo ◽  
F. Huang ◽  
Y. Nugroho ◽  
...  

2013 ◽  
Vol 37 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Geun Ho Gim ◽  
Jung Kon Kim ◽  
Hyeon Seok Kim ◽  
Mathur Nadarajan Kathiravan ◽  
Hetong Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document