scholarly journals Aplicación del refinamiento Rietveld para la identificación de fases del ZnO obtenido por precipitación química

Author(s):  
Víctor Iván Landeros-Velázquez ◽  
Gabriel Herrera-Pérez ◽  
Rafael Vargas-Bernal ◽  
Esthela Ramos-Ramírez
Keyword(s):  

El óxido de zinc (ZnO), es un material semiconductor del tipo II-VI, el cual posee una energía de banda prohibida (Ebp) de 3.37 eV a 298.15 K y la estructura cristalina termodinámicamente más estable es la del tipo de la wurtzita (hexagonal). Con estas características, el ZnO es un candidato excelente para múltiples aplicaciones industriales tales como; la electrónica, magnética, fotocatalítica, optoelectrónica, metalúrgica, alimentaria, cosmética, farmacológica, cerámica, polimérica y muchas otras más. En el presente trabajo, se identificaron y cuantificaron las fases cristalinas presentes en muestras sólidas obtenidas por precipitación química, considerando la relación estequiométrica en medio alcalino. Para el análisis de las fases cristalinas presentes en los sólidos obtenidos se empleó la técnica de Difracción de rayos-X (DRX), los difractogramas se obtuvieron en un intervalo de 4 a 90 de 2θ, a una velocidad de paso de 0.02y de la aplicación del método de Refinamiento Rietveld se llevó a cabo con el empleo del software Materials Using Diffraction Analysis (MAUD). Los resultados cualitativos permitieron considerar la presencia predominante de fase wurtzita (ZnO), la smithsonita (ZnCO3), hidróxido de zinc (Zn(OH)2) y acetato de zinc (ZnC4H6O4). Los resultados del refinamiento permitieron identificar la presencia de fases secundarias de ZnO en estos sólidos, tales como la estructura de roca de sal (halita) y la blenda de zinc.

Author(s):  
Glen B. Haydon

Analysis of light optical diffraction patterns produced by electron micrographs can easily lead to much nonsense. Such diffraction patterns are referred to as optical transforms and are compared with transforms produced by a variety of mathematical manipulations. In the use of light optical diffraction patterns to study periodicities in macromolecular ultrastructures, a number of potential pitfalls have been rediscovered. The limitations apply to the formation of the electron micrograph as well as its analysis.(1) The high resolution electron micrograph is itself a complex diffraction pattern resulting from the specimen, its stain, and its supporting substrate. Cowley and Moodie (Proc. Phys. Soc. B, LXX 497, 1957) demonstrated changing image patterns with changes in focus. Similar defocus images have been subjected to further light optical diffraction analysis.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
J. A. Eades

For well over two decades computers have played an important role in electron microscopy; they now pervade the whole field - as indeed they do in so many other aspects of our lives. The initial use of computers was mainly for large (as it seemed then) off-line calculations for image simulations; for example, of dislocation images.Image simulation has continued to be one of the most notable uses of computers particularly since it is essential to the correct interpretation of high resolution images. In microanalysis, too, the computer has had a rather high profile. In this case because it has been a necessary part of the equipment delivered by manufacturers. By contrast the use of computers for electron diffraction analysis has been slow to prominence. This is not to say that there has been no activity, quite the contrary; however it has not had such a great impact on the field.


2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 483-488
Author(s):  
P. S. Whitfield ◽  
I. J. Davidson ◽  
P. W. Stephens ◽  
L. M. D. Cranswick ◽  
I. P. Swainson

2019 ◽  
Author(s):  
Faina Satdarova

General analysis of the distribution of crystals orientation and dislocation density in the polycrystalline system is presented. Recovered information in diffraction of X-rays adopting is new to structure states of polycrystal. Shear phase transformations in metals — at the macroscopic and microscopic levels — become a clear process. Visualizing the advances is produced by program included in package delivered. Mathematical models developing, experimental design, optimal statistical estimation, simulation the system under study and evolution process on loading serves as instrumentation. To reduce advanced methods to research and studies problem-oriented software will promote when installed. Automation programs passed a testing in the National University of Science and Technology “MISIS” (The Russian Federation, Moscow). You score an advantage in theoretical and experimental research in the field of physics of metals.


2020 ◽  
Author(s):  
Miranda Maliszka ◽  
◽  
Sabrina Sobel ◽  
Anthony Johnson ◽  
Dennis Radcliffe

Sign in / Sign up

Export Citation Format

Share Document