Transitioning from Time Based to Risk Based Inspection (RBI) for Static Equipment at Banyu Urip Facility

2021 ◽  
Author(s):  
R. A. Novitasari

This paper discusses the strategies, implementation, and benefits of the transition from time-based to risked-based inspections (RBI) for static equipment in Banyu Urip Facility. A review of facility integrity programs was conducted to pressure vessel (PV) and tank inspection results to assess the effectiveness of associated integrity programs. This data was utilized as a basis for risk assessment to determine if an RBI program was fit for the purpose to extend inspection intervals for static equipment. The implementation of RBI in Banyu Urip Facility began with carbon steel pressure vessels and tanks. These static equipment were jointly evaluated by multiple functions to ensure seamless execution and timely analysis of data. Inspection packages were developed, which considered applicable degradation mechanisms to select representative test points and ensure consistency for future inspection. All inspection packages consisted of general arrangement drawings depicting vessels and associated test points. Once reviewed and approved, this information was documented in Asset Integrity Management Software to streamline future campaigns. Each vessel was independently evaluated for RBI suitability including the identification of credible failure mode and details of potential future inspection requirements. Outcomes of this evaluation were transmitted into fit for risk inspection interval that provides cost reduction opportunity while maintaining equipment integrity. Furthermore, it also help to drive focus toward higher criticality equipment. This approach is also being considered for other types of static equipment, including piping and PSV.

Alloy Digest ◽  
1987 ◽  
Vol 36 (9) ◽  

Abstract SAE 1025 is a plain carbon steel for general-purpose construction and engineering. It is used in the hot-worked, cold-worked, normalized or water-quenched-and-tempered condition. It also is carburized and used for case-hardened parts. Its many uses include bolts, forgings, axles, machinery components, cold-extruded parts, pressure vessels, case-hardened parts, chain and sprocket assemblies, spinning tools and permanent-mold castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-114. Producer or source: Carbon steel mills.


Author(s):  
Rinzo Kayano ◽  
Masamitsu Abe ◽  
Yukio Hirai

It has been recognized that repair welding plays an important role in the long term, safe operation of pressure equipment. In 2009, The Japan Welding Society (JWES) published guidelines for repair welding of pressure equipment [1], to meet the great need for the safe operation and proper maintenance of aging plants. Pressure equipments made from carbon steel, high tensile steel and Cr-Mo steels are utilized for high pressure services. The subject equipments are pressure vessels, heat exchangers, piping, and storage tanks for petroleum, petrochemical and liquefied natural gas industry. This paper summarizes category and property of these steels and repair welding method including special attention. Especially, weld cold cracking for these steels could be prevented by controlling the repair welding and post-weld heat treatment process to reduce the hydrogen content, hardness and weld residual stress.


2021 ◽  
pp. 531-556
Author(s):  
A. Hudgins ◽  
C. Roepke ◽  
B. James ◽  
B. Kondori ◽  
B. Whitley

Abstract This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.


1961 ◽  
Vol 83 (4) ◽  
pp. 519-527 ◽  
Author(s):  
P. N. Randall ◽  
I. Ginsburgh

The paper describes some experimental work designed to investigate the bursting of pipe and pressure vessels by gaseous detonation. The test specimens were 3.25-in-OD tubes, 12 in. long, and of 0.040 to 0.070-in. wall thickness. The specimens, cut from hot-rolled carbon-steel pipe, and also from drawn carbon-steel tubing, were tested at several temperatures, which were chosen to produce failures both above and below the brittle transition temperatures for the two materials. In addition, an austenitic stainless-steel specimen was tested under very severe conditions in several unsuccessful attempts to fragment it.


Author(s):  
Shahani Kariyawasam ◽  
Hong Wang

The objective of an effective corrosion management program is to identify and mitigate corrosion anomalies before they reach critical limit states. Often as there are many anomalies on pipelines an optimized program will mitigate the few corrosion anomalies that may grow to a critical size within the next inspection interval, without excavating many of the anomalies that will not grow to a critical size. This optimization of the inspection interval and the selection of anomalies to mitigate depend on understanding of corrosion growth. Prediction of corrosion growth is challenging because growth with time is non linear and highly location specific. These characteristics make simplistic approaches such as using maximum growth rates for all defects impractical. Therefore it is important to understand the salient aspects of corrosion growth so that appropriate decisions on excavation and re-inspection can be made without compromising safety or undertaking undue amounts of mitigative activities. In the pipeline industry corrosion growth between two in line inspections (ILIs) has been measured by comparing one ILI run to the next. However many types of ILI comparison methodologies have been used in the past. Within the last decade or two comparison techniques have evolved from box matching of defect samples to signal matching of the total defect populations. Multiple comparison analyses have been performed on the TransCanada system to establish corrosion growth rates. Comparison of the results from these various analyses gives insight into the accuracy and uncertainty of each type of estimate. In an effective integrity management process the best available corrosion growth data should be used. To do so it is important to understand the conservatism and the uncertainty involved in each type of estimate. When using a run-comparison to predict future growth it is assumed that the growth within the last ILI interval will continue (with associated uncertainty) during the next inspection interval. The validity of these assumptions is examined in this study. In the context of this paper these assumptions are validated for external corrosion on onshore pipelines. Characteristics of internal and offshore corrosion are very different in space and time variation. Correlations of external corrosion growth in onshore pipelines with defect size and location are also examined. Learning from multiple corrosion growth studies gives insight into the actual corrosion rate variation along a pipeline as well as general growth characteristics. Different types of corrosion growth modeling for use in probabilistic or deterministic integrity management programs are also discussed.


Author(s):  
Domenic Di Francesco ◽  
Marios Chryssanthopoulos ◽  
Michael Havbro Faber ◽  
Ujjwal Bharadwaj

Abstract In pipelines, pressure vessels and various other steel structures, the remaining thickness of a corroding ligament can be measured directly and repeatedly over time. Statistical analysis of these measurements is a common approach for estimating the rate of corrosion growth, where the uncertainties associated with the inspection activity are taken into account. An additional source of variability in such calculations is the epistemic uncertainty associated with the limited number of measurements that are available to engineers at any point in time. Traditional methods face challenges in fitting models to limited or missing datasets. In such cases, deterministic upper bound values, as recommended in industrial guidance, are sometimes assumed for the purpose of integrity management planning. In this paper, Bayesian inference is proposed as a means for representing available information in consistency with evidence. This, in turn, facilitates decision support in the context of risk-informed integrity management. Aggregating inspection data from multiple locations does not account for the possible variability between the locations, and creating fully independent models can result in excessive levels of uncertainty at locations with limited data. Engineers intuitively acknowledge that the areas with more sites of corrosion should, to some extent, inform estimates of growth rates in other locations. Bayesian multi-level (hierarchical) models provide a mathematical basis for achieving this by means of the appropriate pooling of information, based on the homogeneity of the data. Included in this paper is an outline of the process of fitting a Bayesian multi-level model and a discussion of the benefits and challenges of pooling inspection data between distinct locations, using example calculations and simulated data.


Author(s):  
Philippa Moore ◽  
John Wintle

For pressure equipment containing clean, dry and non corrosive products under stable and benign conditions, there may not be any degradation mechanisms affecting the containment material over a considerable length of time. Taking account of the low risk of failure, it may then be possible to justify a longer interval between shutdowns for internal examination. Nonetheless, it is important that this judgement has been made carefully and correctly, and that adequate safeguards are in place so appropriate action may be taken if the expected conditions are subject to change. This is the theme of a recent report by TWI [1] commissioned by the UK Health and Safety Executive (HSE), which has outlined a six-step approach for assessing and justifying internal examination requirements for process plant at high hazard sites. The work has been developed partly through consultation with leading UK petrochemical companies and inspection bodies that are proactive in developing risk-based inspection methodologies.


Author(s):  
Huaixiang Cao ◽  
Hao Zhang ◽  
Xingqi Qiu

Low-carbon steel Q235B was widely used in low or middle pressure equipments, which were not only withstanding the corrosive effect of the environment or medium, but also the high stress in service processes. In this paper, acetic acid accelerated corrosion test of low-carbon steel Q235B under the action of various stress levels was conducted, and its pitting corrosion behavior was studied by corrosion morphology, pitting corrosion parameters, scanning electron microscope (SEM) and energy disperse spectroscopy (EDS). The results showed that, the degree of pitting corrosion of low carbon steel Q235B with stress was more serious than that of non-stress. And the corrosion started from grain boundary, which was corroded before grain itself, and then grains fell off or dissolved. Furthermore, it would have the tendency of deep hole corrosion with stress, which was more of a threat to the structural safety of pressure vessels.


Author(s):  
Martin Zaleski ◽  
Tom Greaves ◽  
Jan Bracic

The Canadian Standards Association’s Publication Z662-07, Annex N provides guidelines for pipeline integrity management programs. Government agencies that regulate pipelines in Alberta, British Columbia and other Canadian jurisdictions are increasingly using Annex N as the standard to which pipeline operators are held. This paper describes the experience of Pembina Pipeline Corporation (Pembina) in implementing a geohazards management program to fulfill components of Annex N. Central to Pembina’s program is a ground-based inspection program that feeds a geohazards database designed to store geotechnical and hydrotechnical site information and provide relative rankings of geohazard sites across the pipeline network. This geohazard management program fulfills several aspects of the Annex, particularly: record keeping; hazard identification and assessment; risk assessment and reduction; program planning; inspections and monitoring; and mitigation. Pembina’s experience in growing their geohazard inventory from 65 known sites to over 1300 systematically inspected and catalogued sites in a span of approximately two years is discussed. Also presented are methods by which consultants and Pembina personnel contribute to the geohazard inspection program and geohazard inventory, and how the ground inspection observations trigger follow-up inspections, monitoring and mitigation activities.


Sign in / Sign up

Export Citation Format

Share Document